Apollonius - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

geometry

 Apollonius
 find the Apollonius circles of three given circles

 Calling Sequence Apollonius(c1, c2, c3)

Parameters

 c1, c2, c3 - three circles

Description

 • The problem of constructing, in a given plane, a circle tangent to three given circles. The circle representing the solution of this problem is known as Apollonius circle. The problem was named after Apollonius of Perge (3rd- century B.C.)
 • The routine returns a list of Apollonius circles. In general, there are eight circles.
 • Note that the coordinates of the centers and the radii of the circles must be numeric.
 • The command with(geometry,Apollonius) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{geometry}\right):$
 > $\mathrm{circle}\left(\mathrm{c1},{\left(x+3\right)}^{2}+{y}^{2}=4,\left[x,y\right]\right):$
 > $\mathrm{circle}\left(\mathrm{c2},\left[\mathrm{point}\left(\mathrm{O1},6,0\right),3\right],\left[x,y\right]\right):$
 > $\mathrm{circle}\left(\mathrm{c3},{x}^{2}+{\left(y-7\right)}^{2}=1,\left[x,y\right]\right):$
 > $A≔\mathrm{Apollonius}\left(\mathrm{c1},\mathrm{c2},\mathrm{c3}\right):$
 > $\mathrm{draw}\left(A\right)$