incircle - Maple Help

geometry

 incircle
 find the incircle of a given triangle

 Calling Sequence incircle(ic,T, 'centername'=cn)

Parameters

 T - triangle ic - the name of the incircle 'centername'=cn - (optional) where cn is a name denoting the center of the incircle ic

Description

 • The incircle ic of triangle T is the circle inscribed inside the triangle.
 • If the optional argument is given and is of the form 'centername' = cn where cn is name, cn will be the name of the center of ic.
 • For a detailed description of the incircle ic, use the routine detail (i.e., detail(ic))
 • Note that the routine only works if the vertices of the triangle are known.

Examples

 > $\mathrm{with}\left(\mathrm{geometry}\right):$
 > $\mathrm{triangle}\left(T,\left[\mathrm{point}\left(A,0,0\right),\mathrm{point}\left(B,2,0\right),\mathrm{point}\left(C,1,3\right)\right]\right):$
 > $\mathrm{incircle}\left(\mathrm{inc},T,'\mathrm{centername}'=o\right)$
 ${\mathrm{inc}}$ (1)
 > $\mathrm{detail}\left(\mathrm{inc}\right)$
 assume that the names of the horizontal and vertical axes are _x and _y, respectively
 $\begin{array}{ll}{\text{name of the object}}& {\mathrm{inc}}\\ {\text{form of the object}}& {\mathrm{circle2d}}\\ {\text{name of the center}}& {o}\\ {\text{coordinates of the center}}& \left[{1}{,}\frac{{3}}{\sqrt{{10}}{+}{1}}\right]\\ {\text{radius of the circle}}& \frac{{3}}{\sqrt{{10}}{+}{1}}\\ {\text{equation of the circle}}& {1}{+}{{\mathrm{_x}}}^{{2}}{+}{{\mathrm{_y}}}^{{2}}{-}{2}{}{\mathrm{_x}}{-}\frac{{6}{}{\mathrm{_y}}}{\sqrt{{10}}{+}{1}}{=}{0}\end{array}$ (2)