LinearAlgebra[Generic]
BerkowitzAlgorithm
apply the Berkowitz algorithm to a square Matrix
Calling Sequence
Parameters
Description
Examples
BerkowitzAlgorithm[R](A)
R
-
a table or module, the domain of computation
A
square Matrix of values in R
Given an n x n Matrix A of values from a commutative ring R, BerkowitzAlgorithm[R](A) returns a Vector V of dimension n+1 of values in R with the coefficients of the characteristic polynomial of A.
The characteristic polynomial is the polynomial V[1]*x^n + V[2]*x^(n-1) + ... + V[n]*x + V[n+1].
The Berkowitz algorithm does O(n^4) multiplications and additions in R.
The (indexed) parameter R, which specifies the domain of computation, a commutative ring, must be a Maple table/module which has the following values/exports:
R[`0`] : a constant for the zero of the ring R
R[`1`] : a constant for the (multiplicative) identity of R
R[`+`] : a procedure for adding elements of R (nary)
R[`-`] : a procedure for negating and subtracting elements of R (unary and binary)
R[`*`] : a procedure for multiplying elements of R (binary and commutative)
R[`=`] : a boolean procedure for testing if two elements of R are equal
withLinearAlgebraGeneric:
Z`0`,Z`1`,Z`+`,Z`-`,Z`*`,Z`=`≔0,1,`+`,`-`,`*`,`=`:
A≔Matrix2,1,4,3,2,1,0,0,5
A≔214321005
C≔BerkowitzAlgorithmZA
C≔1−921−5
x3|x2|x|1·C
x3−9x2+21x−5
See Also
LinearAlgebra[CharacteristicPolynomial]
LinearAlgebra[Generic][CharacteristicPolynomial]
LinearAlgebra[Modular][CharacteristicPolynomial]
Download Help Document