Eval - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Ordinals

  

Eval

  

substitute values for parameters in an ordinal

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Eval(o, x=v)

Eval(o, l)

Parameters

o

-

ordinal

x

-

name

v

-

integer or polynomial with integer coefficients

l

-

list or set of equations of type x=v

Description

• 

The Eval(o, x=v) calling sequence substitutes the value v for the parameter x in the ordinal o, returning either an ordinal data structure, a nonnegative integer, or a polynomial with positive integer coefficients.

• 

It is possible for v to be a negative integer or a polynomial with some negative integer coefficients, provided that the result is a valid ordinal, which means it does not have any negative integer coefficients.

• 

The resulting ordinal is simplified, namely, any coefficients that become zero are removed, and if only a single term with exponent 0 is left after that, a nonnegative integer or a polynomial with positive integer coefficients is returned.

• 

The Eval(o, l) calling sequence performs all the substitutions in l simultaneously.

• 

This command can also be applied to a polynomial with positive integer coefficients representing a nonnegative integer ordinal.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

o1Ordinalω&comma;x&comma;2&comma;3&comma;1&comma;y+1&comma;0&comma;4

o1ωωx&plus;ω23&plus;ωy+1&plus;4

(2)

Evalo1&comma;x=0

ω23&plus;ωy+1&plus;4

(3)

Several substitutions can be done at once. It is also possible to substitute a polynomial for a parameter and not just an integer.

Evalo1&comma;x=x2+1&comma;y=4

ωωx2+1&plus;ω23&plus;ω5&plus;4

(4)

The result need not be an ordinal data structure.

o2Ordinal2&comma;x2+x&comma;1&comma;x&comma;0&comma;4

o2ω2x2+x&plus;ωx&plus;4

(5)

Evalo2&comma;x=0

4

(6)

Evalω·x&comma;x=0

0

(7)

The attempt to substitute a negative integer or a polynomial with negative coefficients may result in an error if the result has negative coefficients.

o3Ordinal1&comma;2x+2&comma;0&comma;3

o3ω2x+2&plus;3

(8)

Evalo3&comma;x=1

3

(9)

Evalo3&comma;x=2

Error, (in Ordinals:-Eval) invalid substitution; result is not a valid ordinal

Evalo3&comma;x=x1

ω2x&plus;3

(10)

Evalo3&comma;x=x2

Error, (in Ordinals:-Eval) invalid substitution; result is not a valid ordinal

The Eval command can also be applied to a polynomial with positive integer coefficients representing a constant ordinal.

Evalx2+1&comma;x=3=evalx2+1&comma;x=3

10=10

(11)

Compatibility

• 

The Ordinals[Eval] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

eval

Ordinals

Ordinals[Ordinal]

overload

 


Download Help Document