ComplexRootClassification - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


RegularChains[ParametricSystemTools]

  

ComplexRootClassification

  

compute a classification of the complex roots of a polynomial system depending on parameters

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ComplexRootClassification(F, d, R)

ComplexRootClassification(F, H, d, R)

ComplexRootClassification(CS, d, R)

Parameters

F

-

list of polynomials

H

-

list of polynomials

d

-

number of parameters

R

-

polynomial ring

CS

-

constructible set

Description

• 

The integer d must be positive and smaller than the number of variables.

• 

The characteristic of R must be zero and the last d variables of R are regarded as parameters.

• 

For a parametric algebraic system, this command computes all the possible numbers of solutions of this system together with the corresponding necessary and sufficient conditions on its parameters.

• 

More precisely, let V be the variety defined by F. The command ComplexRootClassification(F, d, R) returns a classification of the complex roots of F depending on parameters, that is, a finite partition P of the parameter space into constructible sets such that above each part, the number of solutions of V is either infinite or constant.

• 

If a constructible set CS is specified, the representing regular systems of CS must be square-free. The function call ComplexRootClassification(CS, d, R) returns a classification of the points of the constructible set CS, that is, a finite partition P of the parameter space into constructible sets such that above each part, the number of solutions of CS is either infinite or constant.

• 

If H is specified, let  be the variety defined by the product of polynomials in H. The command ComplexRootClassification(F, H, d, R) returns a classification of the points of the constructible set V-W depending on parameters.

Examples

(1)

(2)

The computation below shows that the input parametric system can have 1 solution or 2 distinct solutions. The corresponding conditions on the parameters are given by constructible sets.

(3)

These constructible sets are printed below.

(4)

See Also

ComprehensiveTriangularize

ConstructibleSetTools

ParametricSystemTools

RealRootClassification

RegularChains

 


Download Help Document