RousseeuwCrouxSn - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Statistics

  

RousseeuwCrouxSn

  

compute Rousseeuw and Croux' Sn

 

Calling Sequence

Parameters

Description

Computation

Data Set Options

Random Variable Options

Examples

References

Compatibility

Calling Sequence

RousseeuwCrouxSn(A, ds_options)

RousseeuwCrouxSn(X, rv_options)

Parameters

A

-

data set or Matrix data set

X

-

algebraic; random variable or distribution

ds_options

-

(optional) equation(s) of the form option=value where option is one of correction, ignore, or weights; specify options for computing Rousseeuw and Croux' Sn statistic of a data set

rv_options

-

(optional) equation of the form numeric=value; specifies options for computing Rousseeuw and Croux' Sn statistic of a random variable

Description

• 

The RousseeuwCrouxSn function computes a robust measure of the dispersion of the specified data set or random variable, as introduced by Rousseeuw and Croux in [2].

• 

This statistic, referred to as  in the remainder of this help page, is defined for a data set  as:

  

where the  of  values is its th OrderStatistic and the  is its th OrderStatistic. ( and  are not Maple functions - they are only used here to define .)

• 

 is a robust statistic: it has a high breakdown point (the proportion of arbitrarily large observations it can handle before giving an arbitrarily large result). The breakdown point of  is the maximum possible value, .

• 

 is a measure of dispersion, also called a measure of scale: if , then for all real constants  and , we have .

• 

The first parameter can be a data set, a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]). For a data set , RousseeuwCrouxSn computes  as defined above. For a distribution or random variable , RousseeuwCrouxSn computes the asymptotic equivalent - the value that  converges to for ever larger samples of .

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

All computations involving data are performed in floating-point; therefore, all data provided must have type/realcons and all returned solutions are floating-point, even if the problem is specified with exact values.

• 

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Data Set Options

• 

The ds_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[DescriptiveStatistics] help page.

• 

ignore=truefalse -- This option controls how missing data is handled by the RousseeuwCrouxSn command. Missing items are represented by undefined or Float(undefined). So, if ignore=false and A contains missing data, the RousseeuwCrouxSn command may return undefined. If ignore=true all missing items in A will be ignored. The default value is false.

• 

weights=Vector -- Data weights. The number of elements in the weights array must be equal to the number of elements in the original data sample. By default all elements in A are assigned weight .

• 

correction=samplesize or correction=none -- In [2], Rousseeuw and Croux define a correction factor  for finite sample size as:

  

If the option correction = samplesize is given, then this correction factor is applied before the result is returned. The default is correction = none, that is, no correction factor is applied.

Random Variable Options

  

The rv_options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

• 

numeric=truefalse -- By default,  is computed using exact arithmetic. To compute  numerically, specify the numeric or numeric = true option.

Examples

Compute  for a data sample.

(1)

(2)

Employ Rousseeuw and Croux's finite sample size correction.

(3)

Let's replace three of the values with very large values.

(4)

(5)

The value of  stays bounded, because it has a high breakdown point.

Compute  for a normal distribution.

(6)

The symbolic result is a rather complicated expression. It evaluates to the same floating-point number.

(7)

(8)

Generate a random sample of size 1000000 from the same distribution and compute the sample's .

(9)

Consider the following Matrix data set.

(10)

We compute  for each of the columns.

(11)

References

  

[1] Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

  

[2] Rousseeuw, Peter J., and Croux, Christophe. Alternatives to the Median Absolute Deviation. Journal of the American Statistical Association 88(424), 1993, pp.1273-1283.

Compatibility

• 

The Statistics[RousseeuwCrouxSn] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

Statistics

Statistics[Computation]

Statistics[DescriptiveStatistics]

Statistics[Distributions]

Statistics[Median]

Statistics[MedianDeviation]

Statistics[RandomVariables]

 


Download Help Document