stats(deprecated)/distributions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : stats(deprecated)/distributions

Distributions of the stats Package

 

Description

Examples

Description

• 

Important: The stats package has been deprecated. Use the superseding package Statistics instead.

• 

The following discrete distributions are available:

binomiald[n,p]

discreteuniform[a,b]

empirical[list_prob]

hypergeometric[N1, N2, n]

negativebinomial[n,p]

poisson[mu]

• 

The following continuous distributions are available:

beta[nu1, nu2]

cauchy[a, b]

chisquare[nu]

exponential[alpha, a]

fratio[nu1, nu2]

gamma[a, b]

laplaced[a, b]

logistic[a, b]

lognormal[mu, sigma]

normald[mu, sigma]

studentst[nu]

uniform[a, b]

weibull[a, b]

 

 

• 

In the following, the discrete distributions have probability density functions that are evaluated at integral values of x.

• 

The  distribution (binomial distribution) has the probability density function . The name binomiald is so chosen in order to distinguish it from the function binomial(). Constraints: x is a non-negative integer no greater than n, n is a positive integer, p is a number between 0 and 1.

• 

The  distribution has a probability density function that is equal to zero if  or if , and equal to  otherwise. Constraints: x is an integer,

• 

The empirical[list_prob] has its probability density function equal to zero if  or  and equal to  otherwise. Constraints: the probabilities must add to 1 exactly.

• 

The , with N1 equal to the size of the success population, N2 equal to the  size of the failure population and n equal to the sample size, has the probability density function . Constraints: .

• 

The  distribution has the probability density function equal to

  

Constraints: x is a non-negative integer no greater than n, n is a positive integer, p is a number between 0 and 1.

• 

The  distribution has the probability density function exp(-mu)*mu^x/x!

• 

For the continuous distributions, the parameter x takes a real value.

• 

The  distribution has the probability density function

1/Beta(nu1, nu2) * x^(nu1-1) * (1-x)^(nu2-1).

  

Constraints: nu1, nu2 are positive integers.

• 

The  distribution has the probability density function .

• 

The  distribution has the probability density function

x^((nu-2)/2) exp(-x/2)/2^(nu/2)/GAMMA(nu/2), x>0, nu>0.

  

Constraint: nu is a positive integer.

• 

The  distribution (exponential distribution) has the probability density function equal to   if  and equal to zero if . Constraint: alpha is a non-negative real number. Default: .

• 

The  distribution has the probability density function

GAMMA( (nu1+nu2)/2)/GAMMA(nu1/2)/GAMMA(nu2/2)*(nu1/nu2)^(nu1/2)*

x^((nu1-2)/2) / ( 1+ (nu1/nu2)*f) ^ ((nu1+nu2)/2), x>0, nu1>0, nu2>0

  

This distribution is also known as the Fisher F distribution and the variance ratio distribution. Constraints: nu1, nu2 are positive integers.

• 

The  distribution gamma distribution has the probability density function . The parameter b, if absent, defaults to the value .

• 

The  distribution has the probability density function , . The name laplaced is so chosen to distinguish it from the laplace() function.

• 

The  distribution has the probability density function

• 

The  has the probability density function

  

The parameter mu has the default value  and the parameter sigma has the default value . Constraint: sigma cannot be 0. See also the normald distribution.

• 

The  distribution has the probability density function

  

The parameter mu has the default value  and the parameter sigma has the default value . Note that sigma is the standard deviation and not the variance. Constraint: sigma must be positive.

• 

The  distribution has the probability density function

GAMMA( (nu+1)/2 )/GAMMA(nu/2)/sqrt(nu*Pi)/(1+t^2/nu)^((nu+1)/2)

  

Constraint: nu is a positive integer.

• 

The  distribution has the probability density function equal to  if , and to   otherwise. The value of b defaults to . The value of a defaults to 0. Constraint: .

• 

The  distribution has the probability density function

Examples

Important: The stats package has been deprecated. Use the superseding package Statistics instead.

(1)

(2)

(3)

See Also

Statistics

Statistics[Distributions]

stats(deprecated)[random]

stats(deprecated)[statevalf]

 


Download Help Document