InfinitesimalCoadjointAction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : InfinitesimalCoadjointAction

LieAlgebras[InfinitesimalCoadjointAction] - find the vector fields defining the infinitesimal co-adjoint action of a Lie group on its Lie algebra

Calling Sequences

     InfinitesimalCoadjointAction(Alg,  M)

Parameters

     Alg       - name or string, the name of an initialized Lie algebra

     M         - name or string, the name of an initialized manifold

 

Description

Examples

Description

• 

Let  be an -dimensional Lie group with Lie algebra and let  be the structure equations for . If are coordinates for the dual vector space , then the infinitesimal generators for the co-adjoint action of  onare the vector fields  .

• 

The command InfinitesimalCoadjointAction(Algebra, Manifold) calculates the vector fields for the Lie algebra Algebra using the coordinates for the dual space provide by M.

• 

The command InfinitesimalCoadjointAction is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form InfinitesimalCoadjointAction(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:- LieAlgebras:- InfinitesimalCoadjointAction(...).

Examples

 

Example 1.

First we initialize a Lie algebra.

(2.1)

(2.2)

Now define coordinates for the dual of the Lie algebra.

alg1 > 

(2.3)

 

Calculate the infinitesimal generators for the co-adjoint action.

N > 

(2.4)

 

The center of the Lie algebra  is trivial and therefore the structure equations for the Lie algebra  are the same as those for .

N > 

(2.5)

 

The vector fields  may be calculated directly using the Adjoint and convert/DGvector commands. For example, we obtain the last vector in as follows.

N > 

alg1 > 

(2.6)

 

Example 2.

First we initialize a 4-dimensional Lie algebra.

N > 

(2.7)
N > 

(2.8)

 

Now define coordinates for the dual of the Lie algebra.

alg2 > 

(2.9)

 

Calculate the infinitesimal generators for the co-adjoint action.

N2 > 

(2.10)

In this example, the Lie algebra has a non-trivial center  and now the structure equations for  are those for the quotient of by its center.

N2 > 

(2.11)
alg2 > 

(2.12)
alg2 > 

(2.13)

 

Example 3.

The invariants for the co-adjoint action are called generalized Casimir operators (See J. Patera, R. T. Sharp , P. Winternitz and H. Zassenhaus, Invariants of real low dimensional Lie algebras, J. Math. Phys. 17, No 6, June 1976, 966--994).

 

We calculate the generalized Casimir operators for the Lie algebra [5,12] from this article. First use the Retrieve command to obtain the structure equations for this algebra and initialize the Lie algebra.

alg2 > 

(2.14)
alg2 > 

(2.15)

 

Calculate the infinitesimal generators for the co-adjoint action.

alg2 > 

(2.16)
N3 > 

(2.17)

 

We use the  InvariantGeometricObjectFields command to calculate the functions which invariant under the group generated by .

N3 > 

(2.18)

Functional combinations of these invariants give the formulas for the generalized Casimir operators in the Patera, Sharp, et al. paper.

N3 > 

(2.19)

See Also

DifferentialGeometry

GroupActions

Library

LieAlgebras

convert/DGvector

LieAlgebraData

Adjoint

Retrieve

InvariantGeometricObjectFields

 


Download Help Document