Killing - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[Killing] - find the Killing form (matrix) of a Lie algebra, evaluate the Killing form on a pair of vectors, evaluate the Killing form on a subspace

LieAlgebras[KillingForm] - find the Killing form (symmetric tensor) of a Lie algebra

Calling Sequences

     Killing(x, y)

     Killing(Alg)

     Killing(h)

     KilllingForm(Alg)

Parameters

     x,y      - a pair of vectors in a Lie algebra

     Alg      - (optional) the name of a Lie algebra

     h        - a list of vectors defining a basis for a subspace of a Lie algebra

 

Description

Examples

Description

• 

The Killing form on a dimensional Lie algebra  is the symmetric quadratic form defined by tracefor any . Here  and  are the adjoint matrices for the vectors  and In terms of the structure constants with respect to the basis {}for one has . If is a subspace with basis , then the restriction of the Killing form to  is given by the matrix

• 

 Killing() returns the symmetric matrix  for the Lie algebra defined by the current frame. Killing(Alg) returns the symmetric matrix  for the Lie algebra Alg. Alg.Killing(h) returns the Killing Matrix restricted to the subalgebra

• 

KillingForm(Alg) returns the symmetric rank 2-tensor , where the {are the dual 1-forms to the basis {.

• 

The command Killing is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Killing(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Killing(...).

Examples

 

Example 1.

First initialize a Lie algebra and display the Lie bracket multiplication table.

Alg1   > 

(2.1)

 

Compute the Killing form on the vectors and y = .

Alg1 > 

(2.2)
Alg1 > 

(2.3)
Alg1 > 

(2.4)

 

Compute the Killing form for the current Lie algebra.

Alg1 > 

 

Compute the Killing form restricted to the subspace span.

Alg1 > 

Alg1 > 

 

Example 2.

 Here is the Killing form for the Lie algebra from Example 1, given as a symmetric, covariant tensor on the Lie algebra.

(2.5)

 

 

 

See Also

DifferentialGeometry

LieAlgebras

Adjoint

MultiplicationTable

Query[Semisimple]

 


Download Help Document