Tensor[HodgeStar] - apply the Hodge star operator to a differential form
Calling Sequences
HodgeStar(g, omega)
Parameters
g - a metric tensor
omega - a differential form
option - (optional) the keyword argument detmetric
Examples
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a 5-dimensional manifold M and define a metric tensor g on the tangent space of M.
DGsetup⁡x1,x2,x3,x4,x5,M1:
g≔evalDG⁡dx1&tdx1+dx2&tdx2+dx3&tdx3+dx4&tdx4+dx5&tdx5
g:=dx1⁢dx1+dx2⁢dx2+dx3⁢dx3+dx4⁢dx4+dx5⁢dx5
The standard basis dx1,dx2, ...,dx5 is an orthonormal basis for g and therefore the Hodge star is easily computed.
HodgeStar⁡g,dx1
dx2⁢⋀⁢dx3⁢⋀⁢dx4⁢⋀⁢dx5
HodgeStar⁡g,dx2
−dx1⁢⋀⁢dx3⁢⋀⁢dx4⁢⋀⁢dx5
HodgeStar⁡g,dx2&wdx3
dx1⁢⋀⁢dx4⁢⋀⁢dx5
HodgeStar⁡g,dx2&wdx4
−dx1⁢⋀⁢dx3⁢⋀⁢dx5
HodgeStar⁡g,dx2&wdx3&wdx4
−dx1⁢⋀⁢dx5
Example 2.
To show the dependence of the Hodge star upon the metric, we consider a general metric g on a 2-dimensional manifold.
DGsetup⁡x,y,M2:
g≔evalDG⁡a⁢dx&tdx+b⁢dx&tdy+dy&tdx+c⁢dy&tdy
g:=a⁢dx⁢dx+b⁢dx⁢dy+b⁢dy⁢dx+c⁢dy⁢dy
HodgeStar⁡g,dx
1a⁢c−b2⁢b⁢dx+1a⁢c−b2⁢c⁢dy
HodgeStar⁡g,dy
−1a⁢c−b2⁢a⁢dx−1a⁢c−b2⁢b⁢dy
f≔HodgeStar⁡g,dx&wdy
f:=1a⁢c−b2
HodgeStar⁡g,f
dx⁢⋀⁢dy
Example 3.
The Laplacian of a function with respect to a metric g can be calculated using the exterior derivative operation and the Hodge star operator.
To illustrate this result, we use the Euclidean metric in polar coordinates r,ϑ.
DGsetup⁡r,θ,M3:
g≔evalDG⁡dr&tdr+r2⁢dtheta&tdtheta
g:=dr⁢dr+r2⁢dtheta⁢dtheta
To simplify the definition of the Laplacian, we define the Hodge operator with g fixed.
Hodge≔f↦HodgeStar⁡g,fassuming0<r
Hodge:=f→DifferentialGeometry:-Tensor:-HodgeStar⁡g,fassuming0<r
To display the Laplacian of φ in compact form we invoke the PDEtools[declare] command.
PDEtoolsdeclare⁡φ⁡r,θ
φ⁡r,θ⁢will now be displayed as⁢φ
Here is the formula for the Laplacian in terms of HodgeStar and ExteriorDerivative. Recall that @ is the composition of functions.
Δ≔Hodge@ExteriorDerivative@Hodge@ExteriorDerivative⁡φ⁡r,θ
Δ:=r⁢φr+r2⁢φr,r+φθ,θr2
Example 4.
The HodgeStar program also works in the more general context of a vector bundle E→M.
DGsetup⁡x,y,u,v,w,E
frame name: E
g≔evalDG⁡du&tdu+dv&tdv+dw&tdw
g:=du⁢du+dv⁢dv+dw⁢dw
HodgeStar⁡g,du&wdv−3⁢du&wdw+2⁢dv&wdw
2⁢du+3⁢dv+dw
Example 5.
The HodgeStar operation can also be performed using an indefinite metric. The keyword argument detmetric = -1 must be used when the metric has negative determinant.
DGsetup⁡x1,x2,x3,x4,M5:
g≔evalDG⁡dx1&tdx1+dx2&tdx2+dx3&tdx3−dx4&tdx4
g:=dx1⁢dx1+dx2⁢dx2+dx3⁢dx3−dx4⁢dx4
HodgeStar⁡g,dx1,detmetric=−1
dx2⁢⋀⁢dx3⁢⋀⁢dx4
HodgeStar⁡g,dx3&wdx4,detmetric=−1
−dx1⁢⋀⁢dx2
Description
See Also
DifferentialGeometry
Tensor
DGinfo
ExteriorDerivative
MetricDensity
PermutationSymbol
RaiseLowerIndices
Download Help Document
What kind of issue would you like to report? (Optional)