DifferentialGeometry/Tensor/KroneckerDeltaSpinor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/Tensor/KroneckerDeltaSpinor

Tensor[KroneckerDeltaSpinor] - create the Kronecker delta spinor

Calling Sequences

     KroneckerDeltaSpinor(spinorType, fr)

Parameters

   spinorType - a string, either "spinor" or "barspinor"

   fr         - (optional) the name of a defined frame

 

Description

Examples

See Also

Description

• 

The Kronecker delta spinor is the type  spinor whose components in any coordinate system are given by the identity matrix.

• 

The command KroneckerDeltaSpinor(spinorType) returns a Kronecker delta spinor of the type specified by spinorType in the current frame unless the frame is explicitly specified.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KroneckerDeltaSpinor(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KroneckerDeltaSpinor.

Examples

 

Example 1.

First create a vector bundle  with base coordinates  and fiber coordinates .

(2.1)

 

Here are the 2 Kronecker delta spinors one can define:

M > 

(2.2)
M > 

(2.3)

 

Define some other manifold .

M > 

(2.4)

 

The current frame is . Because there are no fiber variables, one cannot calculate a Kronecker delta spinor in this frame. To now re-calculate the Kronecker delta spinor , either use the ChangeFrame command or pass KroneckerDeltaSpinor the frame name  as a second argument.

N > 

(2.5)

 

Example 2.

The Kronecker delta spinor defines an identity mapping on spinors of the indicated type. The linear transformation associated to the Kronecker delta spinor  is defined by contracting the covariant index of  against the contravariant index of the spinor . We see that the result is  so that the linear transformation defined by  is indeed the identity transformation.

M > 

(2.6)
M > 

(2.7)
M > 

(2.8)
M > 

(2.9)

 

See Also

DifferentialGeometry, Tensor, BivectorSolderForm, CanonicalTensors, KroneckerDelta, PermutationSymbol, SolderForm 

 


Download Help Document