DifferentialGeometry/LieAlgebras/Query/Ideal - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/Ideal

Query[Ideal] - check if a subalgebra defines an ideal in a Lie algebra

Calling Sequences

     Query(S, "Ideal")

     Query(S, parm, "Ideal")

Parameters

     S       -  a list of independent vectors which defines a basis for subalgebra in a Lie algebra 𝔤 

     parm    - (optional) a set of parameters appearing in the list of vectors S; it is assumed that the set of vectors S is well-defined when the parameters vanish

 

Description 

Examples

Description 

• 

 A list of vectors S  in a Lie algebra 𝔤 is a basis for an ideal in 𝔤  if x, y span(S) for all x  S and y 𝔤 .

• 

Query(S, "Ideal") returns true if the subalgebra S defines an ideal and false otherwise.

• 

Query(S, parm, "Ideal") returns a sequence TF, Eq, Soln, IdealList.  Here TF is true if Maple finds parameter values for which S is an ideal and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for S to be an ideal; Soln is the list of solutions to the equations Eq; and IdealList is the list of ideals obtained from the parameter values given by the different solutions in Soln.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra; then define some subalgebras S1, S2, S3 and check to see if they are ideals.

Alg > 

L_DGLieAlgebra,Alg,4,1,4,1,0,2,3,1,1,2,4,2,1,3,4,3,1

L:=e2,e3=e1,e2,e4=e2,e3,e4=e3

(2.1)
Alg > 

DGsetupL:

Alg > 

S1e1,e2

S1:=e1,e2

(2.2)
Alg > 

QueryS1,Ideal

true

(2.3)
Alg > 

S2e3,e4

S2:=e3,e4

(2.4)
Alg > 

QueryS2,Ideal

false

(2.5)

 

The subalgebra S3depends on a parameter a1.  We find which parameter values make S3 an ideal.

Alg > 

S3evalDGe2,e1+a1e4:

Alg > 

TF,EQ,SOLN,IdealListQueryS3,a1,a2,Ideal

TF,EQ,SOLN,IdealListtrue,0,a1,a1,a1=0,a2=a2,e2,e1

(2.6)

 

The following equations must hold for S3 to be an ideal (each expression must vanish).

Alg > 

EQ

0,a1,a1

(2.7)
Alg > 

S4IdealList1

S4e2,e1

(2.8)
Alg > 

QueryS4,Ideal

true

(2.9)

See Also

DifferentialGeometry

LieAlgebras

Query