SubalgebraNormalizer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[SubalgebraNormalizer] - find the normalizer of a subalgebra

Calling Sequences

     SubalgebraNormalizer(h, k)

Parameters

     h         - a list of vectors defining a subalgebra h in a Lie algebra 𝔤

     k         - (optional) a list of vectors defining a subalgebra k of 𝔤 containing the subalgebra h

 

Description

Examples

Description

• 

Let 𝔤 be a Lie algebra and let h k 𝔤 be subalgebras.The normalizer n of h in k is the largest subalgebra n of k which contains h as an ideal. The normalizer of h always contains h itself.

• 

SubalgebraNormalizer(h, k) calculates the normalizer of h in the subalgebra k. If the second argument k is not specified, then the default is k =𝔤 and the normalizer of h in 𝔤 is calculated.

• 

A list of vectors defining a basis for the normalizer of h is returned.

• 

The command SubalgebraNormalizer is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form SubalgebraNormalizer(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-SubalgebraNormalizer(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra and display the Lie bracket multiplication table.

L1_DGLieAlgebra,Alg1,5,2,5,1,1,3,4,1,1,3,5,2,1:

Alg1   > 

DGsetupL1:

MultiplicationTableLieBracket

e2,e5=e1,e3,e4=e1,e3,e5=e2

(2.1)

 

Calculate the normalizer of S1 = span e3 in S2 =spane1,e3,e4.

Alg1 > 

S1e3:S2e1,e3,e4:

Alg1 > 

SubalgebraNormalizerS1,S2

e3,e1

(2.2)

 

Calculate the normalizer of S3=spane2,e4 in S4=e1, e2,e4,e5.

Alg1 > 

S3e2,e4:S4e1,e2,e4,e5:

Alg1 > 

SubalgebraNormalizerS3,S4

e4,e2,e1

(2.3)

 

Calculate the normalizer of S5=spane1,e2 in the Lie algebra Alg1.

Alg1 > 

S5e1,e2:

Alg1 > 

SubalgebraNormalizerS5

e5,e4,e3,e2,e1

(2.4)

See Also

DifferentialGeometry

LieAlgebras

Centralizer

MultiplicationTable

Query[ideal]

Query[nilpotent]