NullVector - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Tensor[NullVector] - construct a null vector from a solder form and a rank 1 spinor

Calling Sequences

     NullVector(σ, φ)

     NullVector( σ, φ, ψ)

Parameters

   σ         - a spin-tensor defining a solder form on a 4-dimensional spacetime

   φ, ψ       - rank 1 spinors

 

Description

Examples

See Also

Description

• 

Let g be a metric on a 4-dimensional manifold with signature1, 1, 1, 1.   A null vector X satisfies gX, X = 0.

• 

Let σ be a solder form for the metric g, that is, σ is a rank 3 spin-tensor such that gij = σi AA'σjAA' . The NullVector command accepts, as its first argument, a solder form with either covariant or contravariant tensor and spinor indices.

• 

With two arguments, the NullVector command returns the real vector with components Xi = σiAA'φA φA'

• With three arguments, the NullVector command returns the (complex) vector with components Xi = σiAA'φAψA' .

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullVector(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NullVector.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create the spinor bundle M  with spacetime coordinates t, x, y,  z and fiber coordinates z1, z2, w1,w2.

DGsetupt,x,y,z,z1,z2,w1,w2,M

frame name: M

(2.1)

 

Define a spacetime metric g on M with signature 1, 1, 1, 1.

M > 

gevalDGdt&tdtdx&tdxdy&tdydz&tdz

g:=dtdtdxdxdydydzdz

(2.2)

 

Define an orthonormal tetrad F on M with respect to the metric g. Use the command SolderForm to create a solder form σ.

M > 

FD_t,D_x,D_y,D_z

F:=D_t,D_x,D_y,D_z

(2.3)
M > 

σSolderFormF

σ:=122dtD_z1D_w1+122dtD_z2D_w2+122dxD_z1D_w2+122dxD_z2D_w112I2dyD_z1D_w2+12I2dyD_z2D_w1+122dzD_z1D_w1122dzD_z2D_w2

(2.4)

 

Define rank 1 spinors φ1, φ2 and φ3.

M > 

φ1D_z1

φ1:=D_z1

(2.5)
M > 

φ2evalDGaD_z1+bD_z2

φ2:=aD_z1+bD_z2

(2.6)
M > 

φ3D_w2

φ3:=D_w2

(2.7)

 

Use the command NullVector to find the corrresponding null vectors X, Y, Z.

M > 

XNullVectorσ,φ1

X:=122D_t+122D_z

(2.8)
M > 

YNullVectorσ,φ2assuminga::real,b::real

Y:=122b2+122a2D_t+2abD_x+122b2+122a2D_z

(2.9)
M > 

ZNullVectorσ,φ1,φ3

Z:=122D_x+12I2D_y

(2.10)

 

We can use the command TensorInnerProduct to check that the vectors X, Y, Z are indeed null vectors.

M > 

TensorInnerProductg,X,X

0

(2.11)
M > 

TensorInnerProductg,Y,Y

0

(2.12)
M > 

TensorInnerProductg,Z,Z

0

(2.13)

See Also

DifferentialGeometry, Tensor, NullTetrad,  PrincipalNullDirections, SolderForm,   TensorInnerProduct