PoissonProcess - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Finance

  

PoissonProcess

  

create new Poisson process

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

PoissonProcess(lambda)

PoissonProcess(lambda, X)

Parameters

lambda

-

algebraic expression; intensity parameter

X

-

algebraic expression; jump size distribution

Description

• 

A Poisson process with intensity parameter , where  is a deterministic function of time, is a stochastic process  with independent increments such that  and

  

for all . If the intensity parameter  itself is stochastic, the corresponding process is called a doubly stochastic Poisson process or Cox process.

• 

A compound Poisson process is a stochastic process  of the form , where  is a standard Poisson process and  are independent and identically distributed random variables. A compound Cox process is defined in a similar way.

• 

The parameter lambda is the intensity. It can be constant or time-dependent. It can also be a function of other stochastic variables, in which case the so-called doubly stochastic Poisson process (or Cox process) will be created.

• 

The parameter X is the jump size distribution. The value of X can be a distribution, a random variable or any algebraic expression involving random variables.

• 

If called with one parameter, the PoissonProcess command creates a standard Poisson or Cox process with the specified intensity parameter.

Examples

Create a subordinated Wiener process with  as a subordinator.

Next define a compound Poisson process.

(1)

Compute the expected value of  for  and verify that this is approximately equal to  times the expected value of .

(2)

(3)

(4)

Here is an example of a doubly stochastic Poisson process for which the intensity parameter evolves as a square-root diffusion.

(5)

(6)

(7)

(8)

References

  

Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.

Compatibility

• 

The Finance[PoissonProcess] command was introduced in Maple 15.

• 

For more information on Maple 15 changes, see Updates in Maple 15.

See Also

Finance[BlackScholesProcess]

Finance[CEVProcess]

Finance[Diffusion]

Finance[Drift]

Finance[ExpectedValue]

Finance[GeometricBrownianMotion]

Finance[ItoProcess]

Finance[PathPlot]

Finance[SamplePath]

Finance[SampleValues]

Finance[StochasticProcesses]

Finance[WienerProcess]

 


Download Help Document