SPolynomial - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Groebner

  

SPolynomial

  

compute S-polynomials

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

SPolynomial(f, g, T, characteristic=p)

Parameters

f, g

-

polynomials

T

-

a MonomialOrder or ShortMonomialOrder

p

-

(optional) characteristic

Description

• 

SPolynomial(f, g, T) computes an S-polynomial of f and g with respect to the monomial order T. The S-polynomial is a syzygy.  It induces a cancellation of leading terms using the smallest possible multiples of f and g.

• 

In commutative domains the S-polynomial of f and g is given by lcmLTf,LTgfLTfgLTg, where LT(f) denotes the leading term of f with respect to T. In case of Ore algebras the S-polynomial is defined similarly, however since there is no longer a division on monomials the S-polynomial of f and g is defined by c'[f]*t'[f]*f - c'[g]*t'[g]*g where:

– 

t'[f]*LM(f) = t'[g]*LM(g) = lcm(LM(f), LM(g))  where LM(f) denotes the leading monomial of f

– 

t'[f]*LC(f) = c''[f]*t'[f] + lower order terms where LC(f) denotes the leading coefficient of f

– 

t'[g]*LC(g) = c''[g]*t'[g] + lower order terms

– 

c'[f]*c''[f] = c'[g]*c''[g] = c''[f]*c''[g] / gcd(c''[f], c''[g])

• 

An optional argument characteristic=p can be used to specify the ring characteristic when T is a ShortMonomialOrder.  The default value is zero.

• 

If T is a ShortMonomialOrder then f and g must be polynomials in the ring implied by T.  If T is a MonomialOrder created with the Groebner[MonomialOrder] command, then f and g must be members of the algebra used to define T.

• 

Note that the spoly command is deprecated.  It may not be supported in a future Maple release.

Examples

withGroebner:

fx13y212z3

f12z313y2+x

(1)

gx2xy+92z

gx2xy+92z

(2)

SPolynomialf,g,plexx,y,z

12xz313xy2+xy92z

(3)

SPolynomialf,g,tdegx,y,z

12xyz313x2y2+1104z4+x3

(4)

Operators in a Weyl algebra

withOre_algebra:

Adiff_algebraDx,x,Dy,y,polynom=x,y:

TMonomialOrderA,tdegDx,Dy,x,y:

SPolynomialDx+y,Dyx,T

Dxx+Dyy+2

(5)

Operators in a q-calculus algebra

Askew_algebracomm=q,qdilat=Sx,x,q:

TMonomialOrderA,tdegSx:

SPolynomialSx2x,xSx,T

qx2

(6)

Operators in a Weyl algebra modulo a prime

Adiff_algebraDx,x,characteristic=2:

TMonomialOrderA,tdegDx:

SPolynomialDx,x2,T

0

(7)

Algebraic number coefficients

sSPolynomial23ix2x,x2+1+ix,tdegx

s3i2+i3x

(8)

evals,i=I

−6+Ix

(9)

SPolynomial23Ix2x,x2+1+Ix,tdegx

−6+Ix

(10)

See Also

Basis

MonomialOrder

Ore_algebra