GroupTheory
RandomElement
produce a random element of a group
RandomInvolution
produce a random involution of a group
RandomPElement
produce a random p-element of a group
RandomPPrimeElement
produce a random element of a group with order relatively prime to p
Calling Sequence
Parameters
Description
Examples
Compatibility
RandomElement( G )
RandomInvolution( G )
RandomPElement( p, G )
RandomPPrimeElement( p, G )
G
-
a permutation group
p
a prime number
The RandomElement( G ) command returns a randomly selected element of the group G.
The RandomInvolution( G ) command returns a randomly selected involution (element of order 2) of the group G. An exception is raised if G has odd order (as in that case, G contains no involutions).
For a prime number p, the RandomPElement( p, G ) command returns a random element of the group G with order equal to a power of p. An exception is raised in case p does not divide the order of G.
For a prime number p, the RandomPPrimeElement( p, G ) command returns a random element of the group G with order relatively prime to p. An exception is raised if G is a p-group.
with⁡GroupTheory:
G ≔ Group⁡Perm⁡1,2,Perm⁡1,2,3,4,5
G ≔ 1,2,34,5,1,2
RandomElement⁡G
1,2
1,3,2
G ≔ ExceptionalGroup⁡G2(3)
G ≔ G23
RandomInvolution⁡G:
g ≔ RandomInvolution⁡G:
g∈G
true
PermOrder⁡g
2
G ≔ QuasicyclicGroup⁡5,'form'=multiplicative
G ≔ C5∞
g ≔ RandomElement⁡G
g ≔ ⅇ40851989765625⁢I⁢π
G ≔ DihedralGroup⁡5
G ≔ D5
g ≔ RandomPElement⁡5,G
g ≔ 1,5,4,3,2
5
g ≔ RandomPPrimeElement⁡5,G
g ≔ 1,42,3
G ≔ DihedralGroup⁡120:
{ to 100 do PermOrder( RandomPElement( 2, G ) ) end };
2,4,8
{ to 100 do PermOrder( RandomPPrimeElement( 2, G ) ) end };
3,5,15
{ to 100 do PermOrder( RandomInvolution( G ) ) end };
The GroupTheory[RandomElement] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
The GroupTheory[RandomInvolution], GroupTheory[RandomPElement] and GroupTheory[RandomPPrimeElement] commands were introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
GroupTheory[Group]
Download Help Document
What kind of issue would you like to report? (Optional)