DicyclicGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

DicyclicGroup

  

construct a dicyclic group as a permutation group or a finitely presented group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

DicyclicGroup( n )

DicyclicGroup( n, s )

Parameters

n

-

algebraic; understood to be a positive integer

s

-

(optional) equation of the form form = "fpgroup" or form = "permgroup" (default)

Description

• 

The dicyclic group is a non-abelian group of order 4n which contains a cyclic subgroup of order 2n for n>1. It is defined by a presentation of the form

xy,|,xn=y2,,,xy=x-1

• 

If n is a power of 2, the resulting group is a generalized quaternion group.

• 

The DicyclicGroup( n ) command returns a dicyclic group, either as a permutation group (the default) or as a finitely presented group.

• 

You can specify the form of the group returned explicitly by passing one of the options 'form' = "permgroup" or 'form' = "fpgroup".

• 

If the parameter n is not a positive integer, then a symbolic group representing the dicyclic group of order 4*n is returned.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

DicyclicGroup6

1,2,3,45,6,7,89,10,11,1,7,3,52,6,4,89,11

(1)

DicyclicGroup6,form=permgroup

1,2,3,45,6,7,89,10,11,1,7,3,52,6,4,89,11

(2)

DicyclicGroup6,form=fpgroup

a,bb-1aba,a6b2,a12

(3)

IsNilpotentDicyclicGroup82kassumingk::posint

true

(4)

GDicyclicGroup6

G1,2,3,45,6,7,89,10,11,1,7,3,52,6,4,89,11

(5)

ZCenterG

ZZ1,2,3,45,6,7,89,10,11,1,7,3,52,6,4,89,11

(6)

GeneratorsZ

1,32,45,76,8

(7)

SSylowSubgroup2,G

S1,6,3,82,5,4,79,10,1,2,3,45,6,7,8

(8)

For odd n, the dicyclic group of order 4n is a Z-group (all Sylow subgroups are cyclic).

IsCyclicSylowGroupDicyclicGroup7

true

(9)

But, for even n, the Sylow 2-subgroups are generalized quaternion groups.

IsQuaternionGroupSylowSubgroup2,DicyclicGroup12

true

(10)

DisplayCharacterTableDicyclicGroup5

C

1a

2a

4a

4b

5a

5b

10a

10b

|C|

1

1

5

5

2

2

2

2

 

 

 

 

 

 

 

 

 

χ__1

1

1

1

1

1

1

1

1

χ__2

1

−1

−I

I

1

1

−1

−1

χ__3

1

−1

I

−I

1

1

−1

−1

χ__4

1

1

−1

−1

1

1

1

1

χ__5

2

−2

0

0

−135−1251

−125−135

−135+−125+1

−135−125

χ__6

2

−2

0

0

−125−135

−135−1251

−135−125

−135+−125+1

χ__7

2

2

0

0

−135−1251

−125−135

−135−1251

−125−135

χ__8

2

2

0

0

−125−135

−135−1251

−125−135

−135−1251

Compatibility

• 

The GroupTheory[DicyclicGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[DicyclicGroup] command was updated in Maple 2021.

See Also

GroupTheory[CyclicGroup]

GroupTheory[MetacyclicGroup]

GroupTheory[QuaternionGroup]