Factor - Maple Help

Online Help

All Products    Maple    MapleSim


Ordinals

  

Factor

  

factor an ordinal number

 

Calling Sequence

Parameters

Returns

Description

Examples

Compatibility

Calling Sequence

Factor(a, output=o, form=f)

Parameters

a

-

ordinal, nonnegative integer, or polynomial with positive integer coefficients

o

-

(optional) literal keyword; either list (default) or inert

f

-

(optional) literal keyword; one of full (default), monic, rmonic or pairs

Returns

• 

If output=list (the default), a list of ordinals, nonnegative integers and polynomials with positive integer coefficients is returned.

• 

Otherwise, if output=inert is specified, an inert product of ordinal numbers using the inert multiplication and exponentiation operators &. and &^, respectively, is returned. Factors equal to 1 are omitted from this product representation.

Description

• 

The Factor(a) calling sequence computes a factored normal form of a as a product of nonnegative integers and ordinals of the form ωd or ωd+1.

• 

If a=ωe1c1++ωek1ck1+ωekck, then the full factored normal form is:

ωdkckωdk1+1ck1ωd1+1c1

  

where dk=ek and ei+1=ei+di for 1i<k.

• 

Each factor bi&equals;ωdi&plus;1 is irreducible in the sense that if bi&equals;uv for some ordinals u and v, then necessarily u=1 or v=1, and if bi=uv for some ordinals u and v, then necessarily u=bi and v=1.

• 

The monic factored normal form is:

ωdkωdk1&plus;ckωd1&plus;c2c1

• 

The rmonic factored normal form is:

ωdkckωdk1ck1&plus;1ωd1c1&plus;1

• 

If form=pairs is specified, then the result is returned in the form dk&comma;ck&comma;dk1&comma;ck1&comma;...&comma;d1&comma;c1.

• 

The ordinal a can be parametric. However, unless all coefficients ci are positive when substituting arbitrary nonnegative integers for all the parameters, an error will be raised.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

aOrdinalω&comma;5&comma;9&comma;4&comma;7&comma;3&comma;5&comma;3&comma;3&comma;3&comma;2&comma;2

aωω5&plus;ω94&plus;ω73&plus;ω53&plus;ω33&plus;ω22

(2)

Factora

ω2&comma;2&comma;ω&plus;1&comma;3&comma;ω2&plus;1&comma;3&comma;ω2&plus;1&comma;3&comma;ω2&plus;1&comma;4&comma;ωω&plus;1&comma;5

(3)

Display the result as a product, and verify the answer.

Factora&comma;output=inert

ω22ω&plus;13ω2&plus;13ω2&plus;13ω2&plus;14ωω&plus;15

(4)

value

ωω5&plus;ω94&plus;ω73&plus;ω53&plus;ω33&plus;ω22

(5)

Other output forms. Note the grouping of similar factors.

Factora&comma;output=inert&comma;form=monic

ω2ω&plus;2ω2&plus;33ωω&plus;45

(6)

Factora&comma;output=inert&comma;form=rmonic

ω22ω3&plus;1ω23&plus;12ω24&plus;1ωω5&plus;1

(7)

Just the bare data of the full factored normal form, and the original data of the Cantor normal form, for comparison.

Factora&comma;form=pairs

2&comma;2&comma;1&comma;3&comma;2&comma;3&comma;2&comma;3&comma;2&comma;4&comma;ω&comma;5

(8)

opa

ω&comma;5&comma;9&comma;4&comma;7&comma;3&comma;5&comma;3&comma;3&comma;3&comma;2&comma;2

(9)

Parametric examples.

Factora+x

Error, (in Ordinals:-Factor) cannot determine if x is nonzero

Factora+x+7&comma;form=rmonic

x+7&comma;ω22&plus;1&comma;ω3&plus;1&comma;ω23&plus;1&comma;ω23&plus;1&comma;ω24&plus;1&comma;ωω5&plus;1

(10)

Multop

ωω5&plus;ω94&plus;ω73&plus;ω53&plus;ω33&plus;ω22&plus;x+7

(11)

Compatibility

• 

The Ordinals[Factor] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Gcd]

Ordinals[Mult]

Ordinals[Ordinal]

value