OrthogonalSeries
SimplifyCoefficients
simplify the coefficients of an orthogonal series
Calling Sequence
Parameters
Description
Examples
SimplifyCoefficients(S, funct, collect_expr, other_args)
S
-
orthogonal series
funct
name chosen from: collect, expand, factor, normal, and simplify
collect_expr
(optional) expression(s) to be collected
other_args
(optional) complementary arguments if funct is collect
The SimplifyCoefficients(S, funct) calling sequence applies the funct function, where funct is not collect, to the coefficients of the series S (both particular and general coefficients).
The SimplifyCoefficients(S, collect, collect_expr, other_args) function applies the collect function to the coefficients of the series S (both particular and general coefficients). The user must specify the expression(s) to be collected by collect_expr. The user can specify a function to be applied to the collected expressions by other_args.
withOrthogonalSeries:
R≔Create1a,a2,1a+1,GegenbauerCn,23,x
R≔GegenbauerC0,23,xa+a2GegenbauerC1,23,x+GegenbauerC2,23,xa+1
res≔DerivateR,x,operator=struct,root=1
res≔−14413π3a2Γ56JacobiP0,16,76,x45Γ232+4413π3a2Γ5615Γ232−5413π3Γ569Γ232a+1JacobiP1,16,76,x+20413π3Γ56JacobiP2,16,76,x39Γ232a+1
SimplifyCoefficientsres,normal
−14413π3a2Γ56JacobiP0,16,76,x45Γ232+413π3Γ5612a3+12a2−25JacobiP1,16,76,x45Γ232a+1+20413π3Γ56JacobiP2,16,76,x39Γ232a+1
SimplifyCoefficientsres,simplify
−14a2JacobiP0,16,76,x15+12a3+12a2−25JacobiP1,16,76,x15a+15+20JacobiP2,16,76,x13a+13
coef≔un−un+1n2+un+2−unnn+1
R1≔Createcoef,n=1..∞,GegenbauerCn,a,x
R1≔∑n=1∞un−un+1n2+un+2−unnn+1GegenbauerCn,a,x
SimplifyCoefficientsR1,collect,u
∑n=1∞1n2−1nn+1un−un+1n2+un+2nn+1GegenbauerCn,a,x
SimplifyCoefficientsR1,collect,u,normal
∑n=1∞unn2n+1−un+1n2+un+2nn+1GegenbauerCn,a,x
See Also
GegenbauerC
JacobiP
OrthogonalSeries[Create]
OrthogonalSeries[Derivate]
Download Help Document