ExcitedStateSpins - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : Toolboxes : Quantum Chemistry : ExcitedStateSpins

QuantumChemistry

  

ExcitedStateSpins

  

returns spin states of computed excited-state energies

  

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ExcitedStateSpins(molecule, method, options)

Parameters

molecule

-

list of lists; each list has 4 elements, the string of an atom's symbol and atom's x, y, and z coordinates

method

-

(optional)  method = name/procedure where name is one of 'HartreeFock' (default), 'DensityFunctional'

nstates

-

(optional)  nstates = integer/list where the integer specifies the number of excited states computed  

showtable

-

(optional)  showtable = true or false (default) displays a fancy table when set to true

options

-

(optional) equation(s) of the form option = value where option is any valid option of the chosen method

Description

• 

ExcitationStateSpins returns the spin states of the computed excited-state energies.

• 

The procedure returns a (n+1)x2 Matrix containing the state indices and the spin states in columns 1 and 2.

• 

Methods, set by the method keyword, include 'HartreeFock' (default) and 'DensityFunctional'.

• 

The number n of excited states is determined by the optional keyword nstates.  If nstates = n, then n singlet and n triplet states are computed.  If nstates=[n,m], then n singlet and m triplet states are computed.  By default, nstates = 6.          

• 

The data can be displayed in a fancy table by setting the optional keyword showtable to true (the default is false).

• 

When the HartreeFock method is selected, the excited-state energies can be computed by either the time-dependent Hartree-Fock (TDHF) or the configuration interaction singles (CIS) method.  By default TDHF is performed.  TDHF and CIS can be directly selected by setting the optional keyword excited_states to the string "TDHF" or "CIS".   

• 

When the DensityFunctional method is selected, the excited-state energies can be computed by either the time-dependent density functional theory (TDDFT) or the Tamm-Dancoff approximation (TDA) method.  By default TDDFT is performed.  TDDFT and TDA can be directly selected by setting the optional keyword excited_states to the string "TDDFT" or "TDA".    

• 

The result depends upon the chosen molecule, method, and basis set among other options such as charge, spin, and symmetry.  The ground-state molecule must be in a singlet state, that is spin = 0.

• 

The command only works with methods that return excitation energies.

• 

Because the methods employ Maple remember tables, the procedure only computes the results if they have not been previously computed by calling the method directly or indirectly through another property.

Examples

The excited-state energies (and their spin states) of the  molecule can be computed with the Hartree-Fock (TDHF) method.  

First, we define the molecule's geometry with the MolecularGeometry command

(1)

Second, we plot uracil with the PlotMolecule command

Finally, we compute the excited-state energies and their spin states

By double clicking the output matrices above, the results can be viewed in a Matrix Browser with options to export the data.

The spin states can also be displayed in a fancy table by setting the optional keyword showtable to true

State

Spin

Triplet

Triplet

Triplet

Triplet

Singlet

Triplet

Singlet

Singlet

Triplet

Singlet

Singlet

Singlet

 

 

The number of states computed can be controlled with the keyword nstates; i.e., nstates=1 computes 1 singlet and 1 triplet state

State

Spin

Triplet

Singlet

 

See Also

ExcitedStateEnergies
ExcitationSpectra

ExcitationSpectraPlot
Energy
HartreeFock
DensityFunctional

 

 

 

 


Download Help Document