MP2 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

QuantumChemistry

  

MP2

  

compute the ground state energy of a molecule by second-order many-body perturbation theory

Calling Sequence
Description
Outputs

Options
References
Examples

Calling Sequence

MP2(molecule, options)

Parameters

molecule

-

list of lists; each list has 4 elements, the string of an atom's symbol and atom's x, y, and z coordinates

options

-

(optional) equation(s) of the form option = value where option is one of symmetry, unit,  max_memory, nuclear_gradient, return_rdm, populations, conv_tol_hf, diis_hf, diis_space_hf, diis_start_cycle_hf, direct_scf_hf, direct_scf_tol_hf, level_shift_hf, max_cycle_hf, max_memory_scf_hf, nuclear_gradient_hf, populations_hf 

Description

• 

Second-order many-body perturbation theory (MP2) computes the ground state of a many-electron atom or molecule with the correlation energy treated by a second-order perturbation expansion around the Hartree-Fock energy.

• 

MP2 is non-variational, meaning that its energy is not necessarily an upper bound to the full CI energy in a given basis set.

Outputs

The table of following contents:

-

float -- total electronic energy of the system

-

float -- the difference between the MP2 energy and the Hartree-Fock energy

-

Matrix -- coefficients expressing molecular orbitals (columns) in terms of atomic orbitals (rows)

-

Vector -- molecular orbital occupations

-

Array -- two-electron transition amplitudes

-

Matrix -- one-particle reduced density matrix (1-RDM) in molecular-orbital (MO) representation

-

Array -- two-particle reduced density matrix (2-RDM) in molecular-orbital (MO) representation

-

Matrix -- analytical nuclear gradient

-

Vector -- dipole moment according to its x, y and z components

-

Matrix -- atomic-orbital populations

-

Vector -- atomic charges from the populations

Options

• 

basis = string -- name of the basis set.  See Basis for a list of available basis sets.  Default is "sto-3g".

• 

spin = nonnegint -- twice the total spin S (= 2S). Default is 0.

• 

charge = nonnegint -- net charge of the molecule. Default is 0.

• 

symmetry = string/boolean -- is the Schoenflies symbol of the abelian point-group symmetry which can be one of the following:  D2h, C2h, C2v, D2, Cs, Ci, C2, C1. true finds the appropriate symmetry while false (default) does not use symmetry.

• 

unit = string -- "Angstrom" or "Bohr". Default is "Angstrom".

• 

max_memory = posint -- allowed memory in MB. Default is 4000.

• 

ghost = list of lists -- each list has the string of an atom's symbol and the atom's x, y, and z coordinates.  See Ghost Atoms.

• 

initial_mo = Matrix -- Matrix of MOs (columns) in terms of atomic orbitals (rows) that defines the MO basis set.

• 

nuclear_gradient = boolean -- option to return the analytical nuclear gradient if available. Default is false.

• 

return_rdm = string -- options to return the 1-RDM and/or 2-RDM: "none", "rdm1", "rdm1_and_rdm2". Default is "rdm1".

• 

populations = string -- atomic-orbital population analysis: "Mulliken" and "Mulliken/meta-Lowdin". Default is "Mulliken".

• 

Attributes for Hartree Fock:

• 

conv_tol_hf = float -- converge threshold. Default is 

• 

diis_hf = boolean -- whether to employ diis. Default is true.

• 

diis_space_hf = posint -- diis's space size. By default, 8 Fock matrices and error vectors are stored.

• 

diis_start_cycle_hf = posint -- the step to start diis. Default is 1.

• 

direct_scf_hf = boolean -- direct SCF in which integrals are recomputed is used by default.

• 

direct_scf_tol_hf = float -- direct SCF cutoff threshold. Default is

• 

level_shift_hf = float/int -- level shift (in au) for virtual space. Default is

• 

max_cycle_hf = posint -- max number of iterations. Default is 50.

• 

max_memory_scf_hf = posint -- allowed memory in MB. Default is 4000.

• 

nuclear_gradient_hf = boolean -- option to return the analytical nuclear gradient. Default is false.

• 

populations_hf = string -- atomic-orbital population analysis: "Mulliken" and "Mulliken/meta-Lowdin". Default is "Mulliken".

References

1. 

C. Møller and M. S. Plesset, Phys. Rev. 46, 618–622 (1934). "Note on an Approximation Treatment for Many-Electron Systems"

2. 

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Books, New York, 1996).

Examples

An MP2 calculation of the  molecule

(1)

See Also

QuantumChemistry
HartreeFock

 

 


Download Help Document