RepresentingChain - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


RegularChains[SemiAlgebraicSetTools]

  

RepresentingChain

  

return the regular chain part of a regular semi-algebraic set/system

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

RepresentingChain(rst, R)

RepresentingChain(rsas, R)

Parameters

rst

-

a regular semi-algebraic set

rsas

-

a regular semi-algebraic system

R

-

a polynomial ring

Description

• 

The command RepresentingChain(rst, R) or the command RepresentingChain(rsas, R) returns the regular chain part of its first argument.

  

See the page SemiAlgebraicSetTools for the definition of a regular semi-algebraic system and that of a regular semi-algebraic set.

Examples

withRegularChains:

withChainTools:

withParametricSystemTools:

withSemiAlgebraicSetTools:

fax2+bx+c

fax2+bx+c

(1)

Ff

Fax2+bx+c

(2)

N

N

(3)

P

P

(4)

H

H

(5)

RPolynomialRingx,a,b,c

Rpolynomial_ring

(6)

d3

d3

(7)

rrcRealRootClassificationF,N,P,H,d,1..n,R

rrcregular_semi_algebraic_set,border_polynomial

(8)

rstrrc11

rstregular_semi_algebraic_set

(9)

rcRepresentingChainrst,R

rcregular_chain

(10)

Inforc,R

(11)

Fax2+bx+c=0&comma;0<x&comma;a0

Fax2+bx+c=0&comma;0<x&comma;a0

(12)

RPolynomialRingx&comma;c&comma;b&comma;a

Rpolynomial_ring

(13)

outLazyRealTriangularizeF&comma;R&comma;output=list

outregular_semi_algebraic_system

(14)

mapDisplay&comma;out&comma;R

ax2+bx+c=0x>04ca+b2>0andb<0andc>0anda0or4ca+b2>0andb>0andc>0anda<0or4ca+b2>0andb>0andc<0anda0or4ca+b2>0andb<0andc<0anda>0

(15)

PPositiveInequalitiesout1&comma;R

Px

(16)

rcRepresentingChainout1&comma;R&semi;Displayrc&comma;R

rcregular_chain

ax2+bx+c=0a0

(17)

qffRepresentingQuantifierFreeFormulaout1&semi;Displayqff&comma;R

qffquantifier_free_formula

4ca+b2>0andb<0andc>0anda0

or4ca+b2>0andb>0andc>0anda<0

or4ca+b2>0andb>0andc<0anda0

or4ca+b2>0andb<0andc<0anda>0

(18)

Displayout1&comma;R

ax2+bx+c=0x>04ca+b2>0andb<0andc>0anda0or4ca+b2>0andb>0andc>0anda<0or4ca+b2>0andb>0andc<0anda0or4ca+b2>0andb<0andc<0anda>0

(19)

See Also

IsParametricBox

PositiveInequalities

RealRootClassification

RegularChains

RepresentingBox

RepresentingChain

RepresentingQuantifierFreeFormula

RepresentingRootIndex

VariableOrdering