Student[Calculus1]
ImplicitDiffSolution
generate steps for implicit differentiation
Calling Sequence
Parameters
Description
Examples
Compatibility
ImplicitDiffSolution( f, y, x, opts )
f
-
algebraic equation
y
names or function of dependent variable
x
name of dependent variable
opts
(optional) options of the form keyword=value, where keyword is one of output, displaystyle, or animated
The ImplicitDiffSolution command computes the partial derivative of the function, y with respect to x, showing the steps required to make the computation. The input f defines y as a function of x implicitly. It must be an equation in x and y or an algebraic expression, which is understood to be equated to zero.
All other names, which appear in the input f and the derivative variable(s) x and are not of type constant, are treated as independent variables.
Optional arguments output, displaystyle, and animated can be passed to control the style of output. These options are described in Student:-Basics:-OutputStepsRecord. The return value is controlled by the output option.
This function is part of the Student:-Calculus1 package.
withStudent:-Calculus1:
ImplicitDiffSolutionx2+y3=1,y,x
Implicit Differentiation Stepsy3+x2=1•Rewriteyas a functionyx:yx3+x2=1•Differentiate the left sideⅆⅆxyx3+x2▫1. Apply thesumrule◦Recall the definition of thesumruleⅆⅆxfx+gx=ⅆⅆxfx+ⅆⅆxgxfx=yx3gx=x2This gives:ⅆⅆxyx3+ⅆⅆxx2▫2. Apply thepowerrule to the termⅆⅆxx2◦Recall the definition of thepowerrule∂∂xxn=nxn−1◦This means:ⅆⅆxx2=2⋅x1◦So,ⅆⅆxx2=2⋅xWe can rewrite the derivative as:ⅆⅆxyx3+2x▫3. Apply thechainrule to the termyx3◦Recall the definition of thechainruleⅆⅆxfgx=f'gxⅆⅆxgx◦Outside functionfv=v3◦Inside functiongx=yx◦Derivative of outside functionⅆⅆvfv=3v2◦Apply compositionf'gx=3yx2◦Derivative of inside functionⅆⅆxgx=ⅆⅆxyx◦Put it all togetherⅆⅆxfgxⅆⅆxgx=3yx2⋅ⅆⅆxyxThis gives:3yx2ⅆⅆxyx+2x•The final result is3⋅yx2⋅ⅆⅆxyx+2x•Differentiate the right sideⅆⅆx1▫4. Apply theconstantrule to the termⅆⅆx1◦Recall the definition of theconstantruleⅆCⅆx=0◦This means:ⅆⅆx1=0We can now rewrite the derivative as:0•Rewriteⅆⅆxyxasy'and solve fory'3⋅y2⋅y'+2x=0•Subtract2⋅xfrom both sides3⋅y2⋅y'+2⋅x−2⋅x=0−2⋅x•Simplify3⋅y2⋅y'=−2⋅x•Divide both sides by3⋅y2y'⋅3⋅y23⋅y2=−2⋅x3⋅y2•Simplifyy'=−2x3⋅y2•Solutiony'=−2x3y2
ImplicitDiffSolutionax3y−2yz=z2,yx,z,x
Implicit Differentiation Stepsax3y−2yz=z2•Rewriteyas a functionyx,z:ax3yx,z−2yx,zz=z2•Differentiate the left side∂∂xax3yx,z−2yx,zz▫1. Apply thesumrule◦Recall the definition of thesumruleⅆⅆxfx+gx=ⅆⅆxfx+ⅆⅆxgxfx=ax3yx,zgx=−2yx,zzThis gives:∂∂xax3yx,z+∂∂x−2yx,zz▫2. Apply theconstant multiplerule to the term∂∂xax3yx,z◦Recall the definition of theconstant multiplerule∂∂xCfx=Cⅆⅆxfx◦This means:∂∂xax3yx,z=a⋅∂∂xx3yx,zWe can rewrite the derivative as:a∂∂xx3yx,z+∂∂x−2yx,zz▫3. Apply theproductrule◦Recall the definition of theproductruleⅆⅆxfxgx=ⅆⅆxfxgx+fxⅆⅆxgxfx=x3gx=yx,zThis gives:aⅆⅆxx3yx,z+x3∂∂xyx,z+∂∂x−2yx,zz▫4. Apply thepowerrule to the termⅆⅆxx3◦Recall the definition of thepowerrule∂∂xxn=nxn−1◦This means:ⅆⅆxx3=3⋅x2We can rewrite the derivative as:a⋅3⋅x2⋅yx,z+x3∂∂xyx,z+∂∂x−2yx,zz▫5. Apply theconstant multiplerule to the term∂∂x−2yx,zz◦Recall the definition of theconstant multiplerule∂∂xCfx=Cⅆⅆxfx◦This means:∂∂x−2yx,zz=−2z⋅∂∂xyx,zWe can rewrite the derivative as:a3x2yx,z+x3∂∂xyx,z+−2∂∂xyx,zz•The final result isa3x2yx,z+x3∂∂xyx,z−2⋅1z⋅∂∂xyx,z•Differentiate the right side∂∂xz2▫6. Apply theconstantrule to the term∂∂xz2◦Recall the definition of theconstantruleⅆCⅆx=0◦This means:∂∂xz2=0We can now rewrite the derivative as:0•Rewrite∂∂xyx,zasy'and solve fory'ax3y'+3x2y−2⋅1z⋅y'=0•Multiply through:a⋅x3y'+3x2y=ax3y'+3ax2yax3y'+3ax2y+−2⋅y'z=0•Subtract3ax2yfrom both sidesax3y'+3ax2y+−2⋅y'z−3ax2y=0−3ax2y•Simplifyax3y'+−2⋅y'z=−3ax2y•Find common denominatorz⋅ax3y'z+−2⋅y'z=−3ax2y•Sum over common denominatorz⋅ax3y'−2⋅y'z=−3ax2y•Multiply rhs by denominator of lhsz⋅ax3y'−2⋅y'z⋅z=z⋅−3ax2y•Simplifyz⋅ax3y'−2⋅y'=−3ax2yz•Factory'⋅ax3z−2=−3ax2yz•Divide both sides byax3z−2y'⋅ax3z−2ax3z−2=−3ax2yzax3z−2•Simplifyy'=−3ax2yzax3z−2•Solutiony'=−3ax2yzax3z−2
Output can be shortened by declaring some rules to be understood
Understanddiff,constant,power,constantmultiple
Diff=constant,power,constantmultiple
ImplicitDiffSolutiony3+x2=1,y,x
Implicit Differentiation Stepsy3+x2=1•Rewriteyas a functionyx:yx3+x2=1•Differentiate the left sideⅆⅆxyx3+x2▫1. Apply thesumrule◦Recall the definition of thesumruleⅆⅆxfx+gx=ⅆⅆxfx+ⅆⅆxgxfx=yx3gx=x2This gives:ⅆⅆxyx3+ⅆⅆxx2•2. Apply thepowerrule to the termⅆⅆxx2ⅆⅆxyx3+2x▫3. Apply thechainrule to the termyx3◦Recall the definition of thechainruleⅆⅆxfgx=f'gxⅆⅆxgx◦Outside functionfv=v3◦Inside functiongx=yx◦Derivative of outside functionⅆⅆvfv=3v2◦Apply compositionf'gx=3yx2◦Derivative of inside functionⅆⅆxgx=ⅆⅆxyx◦Put it all togetherⅆⅆxfgxⅆⅆxgx=3yx2⋅ⅆⅆxyxThis gives:3yx2ⅆⅆxyx+2x•The final result is3⋅yx2⋅ⅆⅆxyx+2x•Differentiate the right sideⅆⅆx1•4. Apply theconstantrule to the termⅆⅆx10•Rewriteⅆⅆxyxasy'and solve fory'3⋅y2⋅y'+2x=0•Subtract2⋅xfrom both sides3⋅y2⋅y'+2⋅x−2⋅x=0−2⋅x•Simplify3⋅y2⋅y'=−2⋅x•Divide both sides by3⋅y2y'⋅3⋅y23⋅y2=−2⋅x3⋅y2•Simplifyy'=−2x3⋅y2•Solutiony'=−2x3y2
The Student:-Calculus1:-ImplicitDiffSolution command was introduced in Maple 2023.
For more information on Maple 2023 changes, see Updates in Maple 2023.
See Also
implicitdiff
Student:-Basics
Student:-Basics:-SolveSteps
Student:-Calculus1
Student:-Calculus1:-ShowSolution
Download Help Document