ExtendedGosper - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

ExtendedGosper

  

perform extended Gosper's algorithm

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

ExtendedGosper(T, n)

Parameters

T

-

list or set of hypergeometric terms of n

n

-

variable

Description

• 

Let En be the shift operator with respect to n, defined by Enfn=fn+1. For the given set (list)

T={t1n,...,tpn}

  

where the tin are hypergeometric terms of n, the ExtendedGosper(T,n) command returns a set (list)

S={s1n,...,sqn}

  

of hypergeometric terms sin such that

En1i=1qsin=j=1ptjn

  

if each of the hypergeometric term sin exists. Otherwise, the ExtendedGosper routine returns the error message ``no solution found''.

Examples

withSumToolsHypergeometric:

T1kbinomialn,kkj,n2an,n2an+n+12an+1

Tn2an,−1knkkj,n2an+n+12an+1

(1)

ExtendedGosperT,n

a2n22an22an+n2+a+2n+1an+1a33a2+3a1,n+k−1knkkjk+1

(2)

Tn24nn+1n+2,22n1n2n+1binomial2n,n,n24nn+1n+2+n+124n+1n+2n+3

Tn24nn+1n+2,22n1n2n+12nn,n24nn+1n+2+n+124n+1n+2n+3

(3)

ExtendedGosperT,n

22n12nnn,n14n+13n+2

(4)

No solution found:

T2n+1n23n2an,n2an

Tn2an,2n+1n2ann23

(5)

ExtendedGosperT,n

Error, (in SumTools:-Hypergeometric:-ExtendedGosper) no solution found

References

  

Petkovsek, M.; Wilf, H.; and Zeilberger, D. A=B. Wellesley, Massachusetts: A. K. Peters Ltd., 1996.

See Also

sumtools/extended_gosper

SumTools[Hypergeometric]

SumTools[Hypergeometric][Gosper]