Van der Pol - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Van der Pol ODEs

Description

• 

The general form of the Van der Pol ODE is given by the following:

Van_der_Pol_ode := diff(y(x),x,x)-mu*(1-y(x)^2)*diff(y(x),x)+y(x)=0;

Van_der_Pol_odeⅆ2ⅆx2yxμ1yx2ⅆⅆxyx+yx=0

(1)
  

See Birkhoff and Rota, "Ordinary Differential Equations", p. 134.

  

The second order Van der Pol ODE can be reduced to a first order ODE of Abel type as soon as the system succeeds in finding one polynomial symmetry for it (see symgen):

with(DEtools, odeadvisor, symgen):

odeadvisor(Van_der_Pol_ode);

_2nd_order,_missing_x,_Van_der_Pol

(2)

symgen(Van_der_Pol_ode, way=3);

_ξ=1,_η=0

(3)
  

From which, giving the same indication directly to dsolve you obtain the reduction of order

ans := dsolve(Van_der_Pol_ode,way=3);

ansyx=_awhereⅆⅆ_a_b_a_b_a+_b_a_a2μμ_b_a+_a=0,_a=yx,_b_a=ⅆⅆxyx,x=1_b_aⅆ_a+c__1,yx=_a

(4)
  

For the structure of the solution above see ODESolStruc. Reductions of order can also be tested with odetest

odetest(ans,Van_der_Pol_ode);

0

(5)
  

The reduced ODE is of type Abel, and can be selected using either the mouse, or the following:

reduced_ode := op([2,2,1,1],ans);

reduced_odeⅆⅆ_a_b_a_b_a+_b_a_a2μμ_b_a+_a=0

(6)

odeadvisor(reduced_ode);

_rational,_Abel,2nd type,class A

(7)

See Also

DEtools

odeadvisor

dsolve

quadrature

missing

reducible

linear_ODEs

exact_linear

exact_nonlinear

sym_Fx

linear_sym

Bessel

Painleve

Halm

Gegenbauer

Duffing

ellipsoidal

elliptic

erf

Emden

Jacobi

Hermite

Lagerstrom

Laguerre

Liouville

Lienard

Van_der_Pol

Titchmarsh

odeadvisor,types