as set - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

verify/as_set

verify a relation between the operands of two objects

 Calling Sequence verify(expr1, expr2, as_set) verify(expr1, expr2, as_set(ver)) verify(expr1, expr2, as_set(ver, f))

Parameters

 expr1, expr2 - anything ver - verification for the operands f - anything

Description

 • The verify(expr1, expr2, as_set) calling sequence is equivalent to the call verify({op(expr1)},{op(expr2)}, set).
 • The verify(expr1, expr2, as_set(ver)) calling sequence is equivalent to the call verify({op(expr1)}, {op(expr2)}, set(ver)).
 • The verify(expr1, expr2, as_set(ver, f)) calling sequence is equivalent to the call verify({op(expr1)}, {op(expr2)}, set(ver)) with $\mathrm{op}\left(0,\mathrm{expr1}\right)=f$ and $\mathrm{op}\left(0,\mathrm{expr2}\right)=f$.

Examples

 > $\mathrm{verify}\left(f\left(a,b\right),f\left(b,a\right),'\mathrm{as_set}'\right)$
 ${\mathrm{true}}$ (1)
 > $\mathrm{evalb}\left(\mathrm{min}\left(1,{x}^{2}-2x+1\right)=\mathrm{min}\left({\left(x-1\right)}^{2},1\right)\right)$
 ${\mathrm{false}}$ (2)
 > $\mathrm{verify}\left(\mathrm{min}\left(1,{x}^{2}-2x+1\right),\left[{\left(x-1\right)}^{2},1\right],'\mathrm{as_set}\left(\mathrm{expand}\right)'\right)$
 ${\mathrm{true}}$ (3)
 > $\mathrm{verify}\left(\mathrm{min}\left(1,{x}^{2}-2x+1\right),\left[{\left(x-1\right)}^{2},1\right],'\mathrm{as_set}\left(\mathrm{expand},\mathrm{min}\right)'\right)$
 ${\mathrm{false}}$ (4)
 > $\mathrm{verify}\left(\mathrm{min}\left(1,{x}^{2}-2x+1\right),\mathrm{min}\left({\left(x-1\right)}^{2},1\right),'\mathrm{as_set}\left(\mathrm{expand},\mathrm{min}\right)'\right)$
 ${\mathrm{true}}$ (5)