Finance[DynamicPortfolio] - create new dynamic portfolio
|
Calling Sequence
|
|
DynamicPortfolio(update, weights, components, updates)
|
|
Parameters
|
|
update
|
-
|
procedure; procedure for determining how the weights should be updated
|
weights
|
-
|
list or Vector; initial weights
|
components
|
-
|
stochastic process, list or Vector of stochastic processes; components of the portfolio
|
updates
|
-
|
(optional) continuous or positive integer; indicates how often the portfolio should be updated
|
|
|
|
|
Description
|
|
•
|
The DynamicPortfolio command creates new dynamically updated portfolio.
|
•
|
The parameter weights is the vector of initial weights.
|
•
|
The parameter components is either a multi-dimensional stochastic process or a vector of one-dimensional stochastic processes.
|
•
|
Finally, the (optional) parameter updates controls how often the portfolio should be updated. Possible values are continuous or any positive integer. This integer value will specify the number of updates per year. If the value of this parameter is continuous, then the portfolio will be updated at every point in the discretization time grid.
|
|
|
Compatibility
|
|
•
|
The Finance[DynamicPortfolio] command was introduced in Maple 15.
|
|
|
Examples
|
|
>
|
|
Consider two processes. The first process is a geometric Brownian motion. The second process is a deterministic process with constant value 1.0.
>
|
|
>
|
|
>
|
|
| (1) |
>
|
U := proc(w, w0, x, x0, t) if x[1] < 1.05 then w[1] := 0; w[2] := 1; else w[1] := 1; w[2] := 0; end if; end proc;
|
| (2) |
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
>
|
|
| (5) |
>
|
|
>
|
|
>
|
|
>
|
Q := DynamicPortfolio(proc() end, W, X):
|
>
|
|
| (6) |
>
|
|
>
|
|
>
|
|
>
|
R := DynamicPortfolio(proc() end, <0.0, 1.0>, X):
|
>
|
|
| (7) |
>
|
|
>
|
|
>
|
|
>
|
|
| (8) |
>
|
|
| (9) |
>
|
|
| (10) |
>
|
|
| (11) |
>
|
|
| (12) |
|
|
See Also
|
|
Finance[BlackScholesProcess], Finance[CEVProcess], Finance[Diffusion], Finance[Drift], Finance[ExpectedValue], Finance[GeometricBrownianMotion], Finance[ItoProcess], Finance[PathPlot], Finance[SamplePath], Finance[SampleValues], Finance[StochasticProcesses], Finance[WienerProcess]
|
|