
Maple
数学软件
• Maple 教育学术版 • Maple 学生版 • Maple Learn 在线虚拟黑板 • Maple 计算器(手机App) • Maple 专业版 • Maple Flow 计算白板 • Maple 个人版
The Group Theory package includes an extensive collection of routines for constructing, computing with, and visualizing finitely generated groups, including permutation groups, finitely presented groups, Cayley table groups, “black-box” user defined groups, and abstract groups depending on symbolic parameters. Several new commands have been added to the Group Theory package in Maple 2018 for performing new tests and calculating more properties.
> | with( GroupTheory ): |
> | G := Symm( 4 ); |
![]() |
> | H := Subgroup( { Perm( [[1,2],[3,4]] ) }, G ); |
![]() |
> | IsSubnormal( H, G ); |
![]() |
> | IsPermutable( H, G ); |
![]() |
> | IsNormal( H, G ); |
![]() |
> | G := Symm( 3 ); |
![]() |
> | N := Subgroup( { Perm( [[1,2,3]] ) }, G ); |
![]() |
> | IsNormal( N, G ); |
![]() |
> | IsPermutable( N, G ); |
![]() |
> | IsSubnormal( N, G ); |
![]() |
> | IsPGroup( Symm( 3 ) ); |
![]() |
> | IsPGroup( DihedralGroup( 4 ) ); |
![]() |
> | PGroupPrime( DihedralGroup( 4 ) ); |
![]() |
> | IsPGroup( DirectProduct( CyclicGroup( 128 ), QuaternionGroup() ) ); |
![]() |
> | G := < a, b | a^2, b^3, (a.b)^5 = 1 >: |
> | ElementOrder( a.b^2 .a, G ); |
![]() |
> | ClassNumber( Symm( 3 ) ); |
![]() |
> | ClassNumber( DirectProduct( Monster(), DihedralGroup( 4 * n ) ) ) assuming n :: posint; |
![]() |
> | NumAbelianGroups( 1000 ); |
![]() |