Lienard - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Lienard ODEs

 

Description

Examples

Description

• 

The general form of the Lienard ODE is given by the following:

Lienard_ode := diff(y(x),x,x)+f(x)*diff(y(x),x)+y(x)=0;

Lienard_odeⅆ2ⅆx2yx+fxⅆⅆxyx+yx=0

(1)
  

where f(x) is an arbitrary function of x. See Villari, "Periodic Solutions of Lienard's Equation".

• 

All linear second order homogeneous ODEs can be transformed into first order ODEs of Riccati type. That can be done by giving the symmetry [0,y] to dsolve (all linear homogeneous ODEs have this symmetry) or just calling convert (see convert,ODEs).

Examples

withDEtools,odeadvisor:

odeadvisorLienard_ode

_Lienard

(2)

Reduction to Riccati by giving the symmetry to dsolve

ansdsolveLienard_ode,HINT=0,y

ansyx=ⅇ_b_aⅆ_a+c__1whereⅆⅆ_a_b_a=_b_a2_b_af_a1,_a=x,_b_a=ⅆⅆxyxyx,x=_a,yx=ⅇ_b_aⅆ_a+c__1

(3)

The reduced ODE above is of Riccati type

reduced_odeop2,2,1,1,ans

reduced_odeⅆⅆ_a_b_a=_b_a2_b_af_a1

(4)

odeadvisorreduced_ode

_Riccati

(5)

Converting this ODE into a first order ODE of Riccati type

Riccati_ode_TRconvertLienard_ode,Riccati

Riccati_ode_TRⅆⅆx_ax=_F1x_ax2+fx_F1xⅆⅆx_F1x_ax_F1x+1_F1x,yx=ⅇ_ax_F1xⅆxc__1

(6)

In the answer returned by convert, there are the Riccati ODE and the transformation of the variable used. Changes of variables in ODEs can be performed using ?PDEtools[dchange]. For example, using the transformation of variables above, we can recover the result returned by convert.

TRRiccati_ode_TR2

TRyx=ⅇ_ax_F1xⅆxc__1

(7)

withPDEtools,dchange

dchange

(8)

collectisolatedchangeTR,Lienard_ode,_ax,diff_ax,x,_ax,normal

ⅆⅆx_ax=_F1x_ax2fx_F1x+ⅆⅆx_F1x_ax_F1x+1_F1x

(9)

See Also

DEtools

odeadvisor

dsolve

quadrature

missing

reducible

linear_ODEs

exact_linear

exact_nonlinear

sym_Fx

linear_sym

Bessel

Painleve

Halm

Gegenbauer

Duffing

ellipsoidal

elliptic

erf

Emden

Jacobi

Hermite

Lagerstrom

Laguerre

Liouville

Lienard

Van_der_Pol

Titchmarsh

odeadvisor,types