ratrecon - Maple Help

Online Help

All Products    Maple    MapleSim


ratrecon

rational function reconstruction

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ratrecon(u, m, x, N, D)

Parameters

u, m

-

polynomials in x

x

-

name

N, D

-

(optional) non-negative integers

Description

• 

The purpose of this routine is to reconstruct a rational function nd in x from its image umodm where u and m are polynomials in Fx, and F is a field of characteristic 0. Given positive integers N and D, ratrecon returns the unique rational function r=nd if it exists satisfying r=umodm, degreen,xN, degreed,xD, and lcoeffd,x=1. Otherwise ratrecon returns FAIL, indicating that no such polynomials n and d exist.  The rational function r exists and is unique up to multiplication by a constant in F provided the following conditions hold:

N+D<degreem&comma;x

degxGCDd&comma;m=0

• 

If the integers N and D are not specified, they both default to be the integer floordegreem,x12).

• 

Note, in order to use this routine to reconstruct a rational function r=nd from u satisfying r=umodm, the modulus m being used must be chosen to be relatively prime to d. Otherwise the reconstruction returns FAIL.

• 

The special case of m=xk corresponds to computing the N,D Pade approximate to the series u of order Oxk.

• 

For the special case of N=0, the polynomial dn is the inverse of u in Fxm provided u and m are relatively prime.

Examples

sconvertseriesexpx&comma;x&comma;polynom

s1+x+12x2+16x3+124x4+1120x5

(1)

ratrecons&comma;x6&comma;x&comma;3&comma;2

20+13x3+3x2+12xx28x+20

(2)

ratrecons&comma;x6&comma;x&comma;2&comma;3

3x224x60x39x2+36x60

(3)

ratrecons&comma;x6&comma;x&comma;3&comma;3

Error, (in ratrecon) degree bounds too big

ratreconx2+1&comma;x3&comma;x&comma;1&comma;1

FAIL

(4)

rratreconx1&comma;x32&comma;x&comma;0&comma;2

r1x2+x+1

(5)

remx1r&comma;x32&comma;x

1

(6)

See Also

convert/ratpoly

gcdex

iratrecon

Ratrecon