ratrecon - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

ratrecon

rational function reconstruction

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ratrecon(u, m, x, N, D)

Parameters

u, m

-

polynomials in x

x

-

name

N, D

-

(optional) non-negative integers

Description

• 

The purpose of this routine is to reconstruct a rational function nd in x from its image umodm where u and m are polynomials in Fx, and F is a field of characteristic 0. Given positive integers N and D, ratrecon returns the unique rational function r=nd if it exists satisfying r=umodm, degreen,xN, degreed,xD, and lcoeffd,x=1. Otherwise ratrecon returns FAIL, indicating that no such polynomials n and d exist.  The rational function r exists and is unique up to multiplication by a constant in F provided the following conditions hold:

N+D<degreem&comma;x

degxGCDd&comma;m=0

• 

If the integers N and D are not specified, they both default to be the integer floordegreem,x12).

• 

Note, in order to use this routine to reconstruct a rational function r=nd from u satisfying r=umodm, the modulus m being used must be chosen to be relatively prime to d. Otherwise the reconstruction returns FAIL.

• 

The special case of m=xk corresponds to computing the N,D Pade approximate to the series u of order Oxk.

• 

For the special case of N=0, the polynomial dn is the inverse of u in Fxm provided u and m are relatively prime.

Examples

sconvertseriesexpx&comma;x&comma;polynom

s1+x+12x2+16x3+124x4+1120x5

(1)

ratrecons&comma;x6&comma;x&comma;3&comma;2

20+13x3+3x2+12xx28x+20

(2)

ratrecons&comma;x6&comma;x&comma;2&comma;3

3x224x60x39x2+36x60

(3)

ratrecons&comma;x6&comma;x&comma;3&comma;3

Error, (in ratrecon) degree bounds too big

ratreconx2+1&comma;x3&comma;x&comma;1&comma;1

FAIL

(4)

rratreconx1&comma;x32&comma;x&comma;0&comma;2

r1x2+x+1

(5)

remx1r&comma;x32&comma;x

1

(6)

See Also

convert/ratpoly

gcdex

iratrecon

Ratrecon

 


Download Help Document