Parts - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

IntegrationTools

  

Parts

  

perform integration by parts

 

Calling Sequence

Parameters

Options

Description

Examples

Calling Sequence

Parts(t, u)

Parts(t, u, v)

Parts(t, u, applytoall)

Parts(t, u, v, applytoall)

Parameters

t

-

expression containing definite or indefinite integrals

u

-

u-term

v

-

v-term

Options

• 

applytoall

  

If there is more than one integral in the input, the applytoall option will perform integration by parts on each.

Description

• 

The Parts command performs integration by parts in an integral: uxDvxⅆx=uvvxvxDuxⅆx. A similar transformation can be applied to definite integrals as well. By default the Parts command will apply the transformation to t only if it contains a single integral. In case of multiple integrals an error will be thrown. The Parts command can be forced to apply the same transformation to all integrals in t by setting the applytoall option to true.

• 

The first parameter t is the integral.

• 

The second parameter u is the u-term.

• 

The third (optional) parameter v is the v-term. If this term is not specified it will be calculated from the first two parameters.

Examples

withIntegrationTools:

VIntexpxsinx,x

Vⅇxsinxⅆx

(1)

PartsV,sinx

ⅇxsinxⅇxcosxⅆx

(2)

PartsV,expx

ⅇxcosxⅇxcosxⅆx

(3)

Definite integral.

VIntexpxsinx,x=a..b

Vabⅇxsinxⅆx

(4)

PartsV,sinx

ⅇbsinbⅇasinaabⅇxcosxⅆx

(5)

PartsV,expx

ⅇbcosb+ⅇacosaabⅇxcosxⅆx

(6)

Specifying both u and v.

VIntfxgx,x=a..b

Vabfxgxⅆx

(7)

PartsV,fx

gbⅆbfbgaⅆafaabgxⅆxⅆⅆxfxⅆx

(8)

PartsV,fx,Gx

GbfbGafaabGxⅆⅆxfxⅆx

(9)

Dealing with multiple integrals

UIntexpxsinx,x

Uⅇxsinxⅆx

(10)

VIntx2sinx,x

Vx2sinxⅆx

(11)

WvalueV

Wx2cosx+2cosx+2xsinx

(12)

PartsU,sinx

ⅇxsinxⅇxcosxⅆx

(13)

PartsU=W,sinx

ⅇxsinxⅇxcosxⅆx=x2cosx+2cosx+2xsinx

(14)

PartsU+V,sinx

Error, (in IntegrationTools:-Parts) multiple integrals detected

PartsU+V,sinx,applytoall=true

ⅇxsinxⅇxcosxⅆx+x3sinx3x3cosx3ⅆx

(15)

See Also

IntegrationTools

 


Download Help Document