coords
coordinate systems supported in Maple
Description
References
At present, Maple supports the following coordinate systems:
In three dimensions - bipolarcylindrical, bispherical, cardioidal, cardioidcylindrical, casscylindrical, confocalellip, confocalparab, conical, cylindrical, ellcylindrical, ellipsoidal, hypercylindrical, invcasscylindrical, invellcylindrical, invoblspheroidal, invprospheroidal, logcoshcylindrical, logcylindrical, maxwellcylindrical, oblatespheroidal, paraboloidal, paraboloidal2, paracylindrical, prolatespheroidal, rectangular, rosecylindrical, sixsphere, spherical, tangentcylindrical, tangentsphere, and toroidal.
In two dimensions - bipolar, cardioid, cassinian, cartesian, elliptic, hyperbolic, invcassinian, invelliptic, logarithmic, logcosh, maxwell, parabolic, polar, rose, and tangent.
NOTE that only the positive roots have been used for the following transformations: (in three dimensions) casscylindrical, confocalellip, confocalparab, conical, ellipsoidal, hypercylindrical, invcasscylindrical, paraboloidal2, rosecylindrical; (in two dimensions) cassinian, hyperbolic, invcassinian, and rose.
The conversions from the various coordinate systems to cartesian coordinates in 3-space
u,v,w→x,y,z
are given as follows (note that the author is indicated where necessary):
bipolarcylindrical: (Spiegel)
x=a⁢sinh⁡vcosh⁡v−cos⁡u
y=a⁢sin⁡ucosh⁡v−cos⁡u
z=w
bispherical:
x=sin⁡u⁢cos⁡wd
y=sin⁡u⁢sin⁡wd
z=sinh⁡vd where d=cosh⁡v−cos⁡u
cardioidal:
x=u⁢v⁢cos⁡wu2+v22
y=u⁢v⁢sin⁡wu2+v22
z=u2−v22⁢u2+v22
cardioidcylindrical:
x=u2−v22⁢u2+v22
y=u⁢vu2+v22
casscylindrical: (Cassinian-oval cylinder)
x=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1+ⅇu⁢cos⁡v+12
y=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1−ⅇu⁢cos⁡v−12
confocalellip: (confocal elliptic)
x=a2−u⁢a2−v⁢a2−wa2−b2⁢a2−c2
y=b2−u⁢b2−v⁢b2−w−a2+b2⁢b2−c2
z=c2−u⁢c2−v⁢c2−w−a2+c2⁢−b2+c2
confocalparab: (confocal parabolic)
x=a2−u⁢a2−v⁢a2−w−a2+b2
y=b2−u⁢b2−v⁢b2−w−a2+b2
z=a22+b22−u2−v2−w2
conical:
x=u⁢v⁢wa⁢b
y=u⁢−b2+v2⁢b2−w2a2−b2b
z=u⁢a2−v2⁢a2−w2a2−b2a
cylindrical:
x=u⁢cos⁡v
y=u⁢sin⁡v
ellcylindrical: (elliptic cylindrical)
x=a⁢cosh⁡u⁢cos⁡v
y=a⁢sinh⁡u⁢sin⁡v
z = w
ellipsoidal:
y=−b2+u2⁢−b2+v2⁢b2−w2a2−b2b
z=−a2+u2⁢a2−v2⁢a2−w2a2−b2a
hypercylindrical: (hyperbolic cylinder)
x=u2+v2+u
y=u2+v2−u
invcasscylindrical: (inverse Cassinian-oval cylinder)
x=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1+ⅇu⁢cos⁡v+12⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1
y=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1−ⅇu⁢cos⁡v−12⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1
invellcylindrical: (inverse elliptic cylinder)
x=a⁢cosh⁡u⁢cos⁡vcosh⁡u2−sin⁡v2
y=a⁢sinh⁡u⁢sin⁡vcosh⁡u2−sin⁡v2
invoblspheroidal: (inverse oblate spheroidal)
x=a⁢cosh⁡u⁢sin⁡v⁢cos⁡wcosh⁡u2−cos⁡v2
y=a⁢cosh⁡u⁢sin⁡v⁢sin⁡wcosh⁡u2−cos⁡v2
z=a⁢sinh⁡u⁢cos⁡vcosh⁡u2−cos⁡v2
invprospheroidal: (inverse prolate spheroidal)
x=a⁢sinh⁡u⁢sin⁡v⁢cos⁡wcosh⁡u2−sin⁡v2
y=a⁢sinh⁡u⁢sin⁡v⁢sin⁡wcosh⁡u2−sin⁡v2
z=a⁢cosh⁡u⁢cos⁡vcosh⁡u2−sin⁡v2
logcylindrical: (logarithmic cylinder)
x=a⁢ln⁡u2+v2π
y=2⁢a⁢arctan⁡vuπ
logcoshcylindrical: (ln cosh cylinder)
x=a⁢ln⁡cosh⁡u2−sin⁡v2π
y=2⁢a⁢arctan⁡tanh⁡u⁢tan⁡vπ
maxwellcylindrical:
x=a⁢u+1+ⅇu⁢cos⁡vπ
y=a⁢v+ⅇu⁢sin⁡vπ
oblatespheroidal:
x=a⁢cosh⁡u⁢sin⁡v⁢cos⁡w
y=a⁢cosh⁡u⁢sin⁡v⁢sin⁡w
z=a⁢sinh⁡u⁢cos⁡v
paraboloidal: (Spiegel)
x=u⁢v⁢cos⁡w
y=u⁢v⁢sin⁡w
z=u22−v22
paraboloidal2: (Moon)
x=2⁢u−a⁢a−v⁢a−wa−b
y=2⁢u−b⁢b−v⁢b−wa−b
z=u+v+w−a−b
paracylindrical:
x=u22−v22
y=u⁢v
prolatespheroidal:
x=a⁢sinh⁡u⁢sin⁡v⁢cos⁡w
y=a⁢sinh⁡u⁢sin⁡v⁢sin⁡w
z=a⁢cosh⁡u⁢cos⁡v
rectangular:
x=u
y=v
rosecylindrical:
x=u2+v2+uu2+v2
y=u2+v2−uu2+v2
sixsphere: (6-sphere)
x=uu2+v2+w2
y=vu2+v2+w2
z=wu2+v2+w2
spherical:
x=u⁢cos⁡v⁢sin⁡w
y=u⁢sin⁡v⁢sin⁡w
z=u⁢cos⁡w
tangentcylindrical:
x=uu2+v2
y=vu2+v2
tangentsphere:
x=u⁢cos⁡wu2+v2
y=u⁢sin⁡wu2+v2
z=vu2+v2
toroidal:
x=a⁢sinh⁡v⁢cos⁡wd
y=a⁢sinh⁡v⁢sin⁡wd
z=a⁢sin⁡ud where d=cosh⁡v−cos⁡u
The conversions from the various coordinate systems to cartesian (rectangular) coordinates in 2-space
u,v→x,y
are given by:
bipolar: (Spiegel)
x=sinh⁡vcosh⁡v−cos⁡u
y=sin⁡ucosh⁡v−cos⁡u
cardioid:
cartesian:
cassinian: (Cassinian-oval)
elliptic:
x=cosh⁡u⁢cos⁡v
y=sinh⁡u⁢sin⁡v
hyperbolic:
invcassinian: (inverse Cassinian-oval)
invelliptic: (inverse elliptic)
logarithmic:
logcosh: (ln cosh)
maxwell:
parabolic:
polar:
rose:
tangent:
The a, b, and c values in the above coordinate transformations can be given using the coordinate specification as a function, e.g., conical(a,b) or ellcylindrical(2). The values a, b, and c if necessary, should be specified. If not specified, the default values used are a = 1, b = 1/2, and c = 1/3.
Moon, P., and Spencer, D. E. Field Theory Handbook 2d ed. Berlin: Springer-Verlag, 1971.
Spiegel, Murray R. Mathematical Handbook Of Formulas And Tables. New York: McGraw-Hill, 1968.
See Also
addcoords
plot3d[coords]
plot[coords]
plots[changecoords]
plots[coordplot3d]
plots[coordplot]
Download Help Document
What kind of issue would you like to report? (Optional)