Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
OreTools[SetOreRing] - define an Ore polynomial ring
Calling Sequence
SetOreRing(var, 'shift')
SetOreRing(, 'qshift')
SetOreRing(var, 'differential')
SetOreRing(var, algebra_name, 'sigma' = proc1, 'sigma_inverse' = proc2, 'delta' = proc3, 'theta1' = expr)
Parameters
var
-
name; variable
q
name; qshift parameter
algebra_name
name; algebra to be defined
proc1, proc2, proc3
procedures; define algebra
expr
Maple expression
Description
The SetOreRing(var, 'shift') calling sequence defines a shift algebra.
The SetOreRing([var, q], 'qshift') calling sequence defines a qshift algebra.
The SetOreRing(var, 'differential') calling sequence defines a differential algebra.
The shift, qshift, and differential algebras are pre-defined. You can use the SetOreRing command to define other Ore polynomial rings. You must specify procedures to compute sigma, sigma_inverse, and delta, and an expression to define theta(1).
For a brief review of pseudo-linear algebra (also known as Ore algebra), see OreAlgebra.
Examples
Define the shift algebra.
Define the difference algebra.
B := SetOreRing(n, 'difference', 'sigma' = proc(p, x) eval(p, x=x+1) end, 'sigma_inverse' = proc(p, x) eval(p, x=x-1) end, 'delta' = proc(p, x) eval(p, x=x+1) - p end, 'theta1' = 0);
See Also
Ore_algebra, OreTools, OreTools/OreAlgebra, OreTools[Properties][Getdelta], OreTools[Properties][GetRingName], OreTools[Properties][GetSigma], OreTools[Properties][GetSigmaInverse], OreTools[Properties][GetTheta1], OreTools[Properties][GetVariable]
Download Help Document