Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
JetCalculus[TotalJacobian] - find the Jacobian of a transformation using total derivatives
Calling Sequences
TotalJacobian(Phi)
Parameters
Phi - a transformation between two jet spaces
Description
Let E -> M and F -> N be two fiber bundles with dim(M) = m and dim(N) = n and let Phi: J^k(E) -> J^l(F) be a transformation. Let (x^i), i = 1, ... m be a system of local coordinates on M and let (y^a), a = 1, ... n be a system of local coordinates on N. Let F^a = y^a(Phi) be the y^a components of the map Phi--these are functions on J^k(E). Then the total Jacobian of Phi is the m x n Matrix [D_i F^a] where D_i denotes the total derivative with respect to x^i.
TotalJacobian returns the m x n matrix [D_i F^a].
The command TotalJacobian is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form TotalJacobian(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-TotalJacobian(...).
Examples
Example 1.
First initialize several different jet spaces over bundles E1 -> M1, E2 -> M2, E3 -> M3. The dimension of the base spaces are dim(M1) = 2, dim(M2) = 1, dim(M3) = 3.
Define a transformation Phi1: J^2(E1) -> E2 and compute its total Jacobian (a 1 x 2 matrix).
Define a transformation Phi2: J^2(E1) -> E3 and compute its total Jacobian (a 3 x 2 matrix).
Define a transformation Phi3: J^1(E1) -> E1 and compute its total Jacobian (a 2 x 2 matrix).
See Also
DifferentialGeometry, JetCalculus, PushforwardTotalVector, TotalDiff, Transformation
Download Help Document