Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
LinearFunctionalSystems[HomogeneousSystem] - return the homogeneous system equivalent to the given system
Calling Sequence
HomogeneousSystem(homo, sys, vars)
HomogeneousSystem(homo, A, b, x, case)
HomogeneousSystem(homo, A, x, case)
Parameters
homo
-
name; indicates whether the given system is homogeneous
sys
list of equations; linear functional system
vars
list of function variables such as ; variables to solve for
A
Matrix with rational elements
b
Vector with rational elements
x
independent variable
case
name indicating the case of the system; one of 'differential', 'difference', or 'qdifference'
Description
The HomogeneousSystem function returns the homogeneous system that is equivalent to the given linear functional system of equations with polynomial coefficients.
The system parameter is entered either in list form (a list of equations sys and a list of function variables vars to solve for), or in matrix form (matrix A, vector b, and the independent variable x, where the vector b is optional).
The matrix form specifies the system , where L is the operator (either differential, difference, or q-difference), is the vector of the functions to solve for, A is a rational matrix, and b is a rational vector (right-hand side).
For the matrix from of the calling sequence, the case of the system must be specified as one of 'differential', 'difference', or 'qdifference'. If b is not specified, the system is assumed to be homogeneous.
The parameter homo is set to true if the given system is homogeneous and false otherwise.
All of the base functions of the LinearFunctionalSystems package are designed to handle homogeneous systems. In order to solve inhomogeneous systems, the following technique is used.
For a given inhomogeneous system, HomogeneousSystem constructs the equivalent homogeneous system by adding one more equation for the constant function and transforming all right-hand sides of the given system into the coefficients of this new function.
The equivalent homogeneous system that is returned is in the form suitable to be used by other functions of the LinearFunctionalSystems package. Namely, it either returns a sequence of a new list of equations and a list of functions to solve for, or a new matrix, vector, variable, and case.
The error conditions associated with HomogeneousSystem are the same as those which are generated by LinearFunctionalSystems[Properties].
This function is part of the LinearFunctionalSystems package, and so it can be used in the form HomogeneousSystem(..) only after executing the command with(LinearFunctionalSystems). However, it can always be accessed through the long form of the command by using the form LinearFunctionalSystems[HomogeneousSystem](..).
Examples
See Also
LinearFunctionalSystems[PolynomialSolution], LinearFunctionalSystems[Properties], LinearFunctionalSystems[RationalSolution]
Download Help Document