Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
SNAP[AreCoprime] - determine if two numeric polynomials are relatively prime up to a given error bound
SNAP[IsSingular] - determine if a numeric polynomial has a double root up to a given error bound
Calling Sequence
AreCoprime(a, b, z, eps, out)
IsSingular(a, z, eps, out)
Parameters
a, b
-
univariate numeric polynomials
z
name; indeterminate for a and b
eps
non-negative numeric; error bound
out
(optional) equation of the form output = obj where obj is 'BC' or a list containing one or more instances of this name; select result objects to compute
Description
The AreCoprime(a, b, z, eps) command checks whether univariate numeric polynomials a, b in z remain coprime after perturbations of order eps. This is done by computing reliable lower and upper bounds on the distance between the pair (a, b) and the set of the univariate complex polynomial pairs in z with degrees that do not exceed those of a and b, and that have at least one common root. (See SNAP[DistanceToCommonDivisors].)
The lower bound LB is obtained using the SNAP[DistanceToCommonDivisors] function. The upper bound UP is the minimum between the 1-norm of a and the 1-norm of b.
If eps > UP, false is returned;
if eps < LB, true is returned;
if LB <= eps <= UP, FAIL is returned because it is impossible to provide a reliable answer.
The IsSingular(a, z, eps) command checks whether the univariate numeric polynomial a in z has common roots up to perturbations of order eps. It essentially calls AreCoprime(a, b, z) with b = diff(a, z).
The output option (out) determines the content of the returned expression sequence.
As specified by the out option, Maple returns an expression sequence containing one or more BC, which is the list [v, u] of the numeric polynomials in z that satisfy av+bu=1 and and (bezout coefficients for coprime polynomials a and b). This list is empty if the routine returns false or FAIL.
Examples
See Also
expand, SNAP[DistanceToCommonDivisors], SNAP[DistanceToSingularPolynomials]
References
Beckermann, B., and Labahn, G. "A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials." Journal of Symbolic Computation. Vol. 26, (1998): 691-714.
Beckermann, B. and Labahn, G. "When are two numerical polynomials relatively prime?" Journal of Symbolic Computation. Vol. 26, (1998): 677-689.
Download Help Document