Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Slode[FPseries] - formal power series solutions for a linear ODE
Slode[FTseries] - formal Taylor series solutions for a linear ODE
Calling Sequence
FPseries(ode, var, vn, opts)
FTseries(ode, var, vn, opts)
FPseries(LODEstr, vn, opts)
FTseries(LODEstr, vn, opts)
Parameters
ode
-
linear ODE with polynomial coefficients
LODEstr
LODEstruct data structure
var
dependent variable, for example
vn
new function in the form
opts
optional arguments of the form keyword=value
Description
The FPseries and FTseries commands return a power series solution of the given linear ordinary differential equation with polynomial coefficients which must be homogeneous or inhomogeneous with a right hand side that is a polynomial, a rational function, or a "nice" power series (see LODEstruct) in the independent variable .
If ode is an expression, then it is equated to zero.
The routine returns an error message if the differential equation ode does not satisfy the following conditions.
ode must be linear in var
ode must have polynomial coefficients in
ode must be homogeneous or have a right-hand side that is rational or a "nice" power series in
The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
A homogeneous linear ordinary differential equation with coefficients that are polynomials in has a linear space of formal power series solutions where is one of , , , or , is the expansion point, and the sequence satisfies a homogeneous linear recurrence. In the case of an inhomogeneous equation with a right-hand side that is a "nice" power series, satisfies an inhomogeneous linear recurrence.
The routines choose a polynomial basis depending on the expansion point. If is a rational or algebraic number, then the basis is for FPseries and for FTseries. If , then the basis is for FPseries and for FTseries.
Both routines then build a linear recurrence for the sequence of coefficients of the series solution in the chosen basis. They determine the number of initial values of this sequence so that it is possible to calculate any element from these initial values using the recurrence (taking into account the order and the zeros of the leading coefficients of the recurrence), and calculate these initial values.
The formal power series is represented by an FPSstruct data structure:
where are expressions, the initial series coefficients.
In the case of an inhomogeneous equation with a rational right hand side the commands work similarly. In the case of a "nice" power series right hand side the recurrence is inhomogeneous.
Options
x=a or 'point'=a
Specifies the expansion point in the case of a homogeneous equation or an inhomogeneous equation with rational right-hand side. The default is . It can be an algebraic number, depending rationally on some parameters, or . In the case of a "nice" series right-hand side the expansion point is given by the right-hand side and cannot be changed.
'terms'=N
Specifies a nonnegative integer N, the required number of initial terms of the series solutions. If this option is given, then the routine compares it with the determined number and, if , calculates the first N initial coefficients.
'free'=C
Specifies a base name C to use for free variables C[0], C[1], etc. The default is the global name _C. Note that the number of free variables may be less than the order of the given equation if the expansion point is singular.
Examples
Some inhomogeneous examples:
See Also
LODEstruct, Slode, Slode[msparse_series_sol], Slode[series_by_leastsquare]
Download Help Document