Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
RegularChains[ParametricSystemTools][ComplexRootClassification] - compute a classification of the complex roots of a polynomial system depending on parameters
Calling Sequence
ComplexRootClassification(F, d, R)
ComplexRootClassification(F, H, d, R)
ComplexRootClassification(CS, d, R)
Parameters
F
-
list of polynomials
H
d
number of parameters
R
polynomial ring
CS
constructible set
Description
The integer d must be positive and smaller than the number of variables.
The characteristic of R must be zero and the last d variables of R are regarded as parameters.
For a parametric algebraic system, this command computes all the possible numbers of solutions of this system together with the corresponding necessary and sufficient conditions on its parameters.
More precisely, let V be the variety defined by F. The command ComplexRootClassification(F, d, R) returns a classification of the complex roots of F depending on parameters, that is, a finite partition P of the parameter space into constructible sets such that above each part, the number of solutions of V is either infinite or constant.
If a constructible set CS is specified, the representing regular systems of CS must be square-free. The function call ComplexRootClassification(CS, d, R) returns a classification of the points of the constructible set CS, that is, a finite partition P of the parameter space into constructible sets such that above each part, the number of solutions of CS is either infinite or constant.
If H is specified, let be the variety defined by the product of polynomials in H. The command ComplexRootClassification(F, H, d, R) returns a classification of the points of the constructible set V-W depending on parameters.
Examples
The computation below shows that the input parametric system can have 1 solution or 2 distinct solutions. The corresponding conditions on the parameters are given by constructible sets.
These constructible sets are printed below.
See Also
ComprehensiveTriangularize, ConstructibleSetTools, ParametricSystemTools, RealRootClassification, RegularChains
Download Help Document