Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
geometry[SimsonLine] - find the Simson line of a given triangle with respect to a given point on the circumcircle of the triangle
Calling Sequence
SimsonLine(sl, N, T)
Parameters
sl
-
the name of the Simson line
N
point on the circumcircle
T
triangle
Description
The feet of the perpendiculars from any point N on the circumcircle of a triangle T to the sides of the triangle are collinear. The line of collinearity is called the Simson line of the point N for the triangle T
For a detailed description of the Simson line sl, use the routine detail (i.e., detail(sl))
Note that the routine only works if the vertices of triangle T are known.
The command with(geometry,SimsonLine) allows the use of the abbreviated form of this command.
Examples
assume that the names of the horizontal and vertical axes are _x and _y, respectively
See Also
geometry[point], geometry[triangle]
Download Help Document