Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Tensor[PlebanskiTensor] - calculate the Plebanski tensor from a trace-free rank 2 symmetric tensor, the Plebanski spinor from a symmetric (2, 2) spinor, the Plebanski Newman-Penrose coefficients from a table of Newman-Penrose Ricci coefficients
Calling Sequences
PlebanskiTensor(g, A)
PlebanskiTensor(S)
PlebanskiTensor(T
Parameters
g - the metric tensor on a 4 dimensional manifold
S - a symmetric, trace-free, covariant rank 2 tensor or a rank 4 spinor on
T - a table with indices
Description
The Plebanski tensor is the rank 4 covariant tensor constructed the metric tensor and a symmetric covariant trace-free rank two tensor by the formula
The tensor has all the algebraic properties of the Weyl tensor. It is skew-symmetric in the indices and satisfies the cyclic identity on and is trace-free with respect to the metric .
The 2 component spinors and corresponding to the tensors and are related by
The Newman Penrose coefficients for are given in terms of the Newman-Penrose coefficients for by
The command PlebanskiTensor calculates the Plebanski tensor for a given tensor . If a tensorial form of is given, the tensorial form of is returned (first calling sequence); if the spinor components of are given, the spinor components of are returned (second calling sequence); and if the Newman-Penrose components of are given, then the Newman-Penrose components of are returned (third calling sequence).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form PlebanskiTensor(...) only after executing the commands with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-PlebanskiTensor(...)
Examples
Example 1.
First create a spinor bundle with space-time coordinates and spinor coordinates (Spinors are not needed for this first example but will be used in Example 2.)
Define a metric tensor .
Define a symmetric, trace-free, rank 2 tensor.
Compute the Plebanski tensor of
We check that the tensor has the same algebraic properties as the Weyl tensor. We use the command SymmetrizeIndices to show that is skew-symmetric on its 1st and 2nd indices
The Plebanski tensor is skew-symmetric on its 3rd and 4th indices
The Plebanski tensor satisfies the cyclic identity on its first 3 indices.
The Plebanski tensor is also trace-free on its 1st and 3rd indices. To check this we use the commands InverseMetric and ContractIndices to evaluate .
Example 2.
In this example we will convert the tensor S to a spinor and compute the spinor form of the Plebanski tensor. We start by defining an orthonormal tetrad for the metric and using this tetrad and the command SolderForm to construct a solder form for the metric .
The command RicciSpinor gives the spinor form of
We calculate the Plebanski tensor in its spinor form.
We can check the consistency of this result using the command WeylSpinor to calculate the spinor form of
Example 3.
In this example we will calculate the Newman-Penrose coefficients of the tensor from the Newman-Penrose coefficients of the Plebanski tensor For these calculations we need the NullTetrad determined by the orthonormal tetrad .
We can check the consistency of this result using the command NPCurvatureScalars to calculate the Newman-Penrose coefficients of
See Also
DifferentialGeometry, Tensor, convert, NPCurvatureScalars, NullTetrad, OrthonormalTetrad, RicciSpinor, SolderForm, WeylSpinor
Download Help Document