Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Statistics[OneSampleTTest] - apply the one sample t-test for the population mean of a sample
Calling Sequence
OneSampleTTest(X, mu0, test_options)
OneSampleTTest[SampleSize](width, sigma, samplesize_options)
Parameters
X
-
rtable; data sample
mu0
realcons; the test value for the mean
test_options
(optional) equation(s) of the form option=value where option is one of confidence, output, alternative, ignore or weights; specify options for the OneSampleTTest function
width
realcons; the desired width of the confidence interval
sigma
realcons; a worst-case estimate on the value of the standard deviation
samplesize_options
(optional) equation(s) of the form option=value where option is one of confidence or iterations; specify options for the OneSampleTTest[SampleSize] utility function
Description
The OneSampleTTest function computes the one sample t-test upon a dataset X. This calculation is used to determine the significance of the difference between the sample mean and an assumed population mean when the standard deviation of the population is unknown.
The first parameter X is the data sample to use in the analysis.
The second parameter mu0 is the assumed population mean, specified as a real constant.
The OneSampleTTest[SampleSize] utility computes the number of samples required in a data set in order to get a confidence interval with the specified width using this test.
The first parameter of the utility, width, specifies the desired width of the confidence interval (difference between the upper bound and the lower bound). This value must be strictly greater than 0.
The second parameter of the utility, sigma, specifies a worst-case estimate on the standard deviation of the sample size.
Test Options
The test_options argument can contain one or more of the options shown below.
confidence=float
This option is used to specify the confidence level of the interval and must be a floating-point value between 0 and 1. By default, this is set to 0.95.
output='report', 'statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis', or list('statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis')
This option is used to specify the desired format of the output from the function. If 'report' is specified then a module containing all output from this test is returned. If a single parameter name is specified other than 'report' then that quantity alone is returned. If a list of parameter names is specified then a list containing those quantities in the specified order will be returned.
alternative='twotailed', 'lowertail', or 'uppertail'
This opton is used to specify the type or interval used in the analysis, or similarly, the alternative hypothesis to consider when performing the analysis.
weights=rtable
Vector of weights (one-dimensional rtable). If weights are given, the OneSampleTTest function will scale each data point to have given weight. Note that the weights provided must have type realcons and the results are floating-point, even if the problem is specified with exact values. Both the data array and the weights array must have the same number of elements.
ignore=truefalse
This option is used to specify how to handle non-numeric data. If ignore is set to true all non-numeric items in data will be ignored.
Sample Size Options
The samplesize_options argument can contain one or more of the options shown below.
confidence=float -- This option is used to specify the confidence level of the interval and must be a floating-point value between 0 and 1. By default this is set to 0.95.
iterations=posint -- This option specifies the maximum number of iterations to process when attempting to calculate the number of samples required. By default this is set to 100.
Notes
This test generates a complete report of all calculations in the form of a userinfo message. In order to access this report, specify infolevel[Statistics] := 1.
A stronger version of the t-test, the z-test is available if the standard deviation of the sample is known.
Examples
Specify the data sample.
Calculate the one sample t-test on an array of values.
Standard T-Test on One Sample ----------------------------- Null Hypothesis: Sample drawn from population with mean 5 Alt. Hypothesis: Sample drawn from population with mean not equal to 5 Sample size: 10 Sample mean: 7.6 Sample standard dev.: 4.24788 Distribution: StudentT(9) Computed statistic: 1.93554 Computed pvalue: 0.0849151 Confidence interval: 4.56125385034702 .. 10.638746149653 (population mean) Result: [Accepted] There is no statistical evidence against the null hypothesis
Calculate the lower tail t-test.
Standard T-Test on One Sample ----------------------------- Null Hypothesis: Sample drawn from population with mean greater than 5 Alt. Hypothesis: Sample drawn from population with mean less than 5 Sample size: 10 Sample mean: 7.6 Sample standard dev.: 4.24788 Distribution: StudentT(9) Computed statistic: 1.93554 Computed pvalue: 0.957542 Confidence interval: -infinity .. 10.0624132658958 (population mean) Result: [Accepted] There is no statistical evidence against the null hypothesis
Calculate the upper tail t-test.
Standard T-Test on One Sample ----------------------------- Null Hypothesis: Sample drawn from population with mean less than 5 Alt. Hypothesis: Sample drawn from population with mean greater than 5 Sample size: 10 Sample mean: 7.6 Sample standard dev.: 4.24788 Distribution: StudentT(9) Computed statistic: 1.93554 Computed pvalue: 0.0424575 Confidence interval: 5.1375867341042 .. infinity (population mean) Result: [Rejected] There exists statistical evidence against the null hypothesis
Calculate the number of samples required to produce a confidence interval of width 3, given a worst case standard deviation of 5.
See Also
Statistics, Statistics[Computation], Statistics[Tests][TwoSamplePairedTTest], Statistics[Tests][TwoSampleTTest]
References
Kanji, Gopal K. 100 Statistical Tests. London: SAGE Publications Ltd., 1994.
Sheskin, David J. Handbook of Parametric and Nonparametric Statistical Procedures. London: CRC Press, 1997.
Download Help Document