Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
RegularChains[ConstructibleSetTools][IsContained] - check whether or not a constructible set is a subset of another one
RegularChains[SemiAlgebraicSetTools][IsContained] - check whether or not a semi-algebraic set is a subset of another one
Calling Sequence
IsContained(cs1, cs2, R)
IsContained(lrsas1, lrsas2, R)
Parameters
cs1, cs2
-
constructible sets
lrsas1, lrsas2
lists of regular semi-algebraic systems
R
polynomial ring
Description
The command IsContained(cs1, cs2, R) returns true if cs1 is contained in cs2; otherwise false. The polynomial ring may have characteristic zero or a prime characteristic. cs1 and cs2 must be defined over the same ring R.
The command IsContained('lrsas1', 'lrsas2', 'R') returns true if lrsas1 is contained in lrsas2; otherwise false. The polynomial ring must have characteristic zero. lrsas1 and lrsas2 must be defined over the same ring R.
A constructible set is encoded as an constructible_set object, see the type definition in ConstructibleSetTools.
A semi-algebraic set is encoded by a list of regular_semi_algebraic_system, see the type definition in RealTriangularize.
This command is available once RegularChains[ConstructibleSetTools] submodule or RegularChains[SemiAlgebraicSetTools] submodule have been loaded. be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][IsContained] or RegularChains[SemiAlgebraicSetTools][IsContained].
Compatibility
The RegularChains[SemiAlgebraicSetTools][IsContained] command was introduced in Maple 16.
The lrsas1 parameter was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
First, define the polynomial ring and two polynomials of .
Using the GeneralConstruct function and adding one inequality, you can build a constructible set. By and , two constructible sets cs1 and cs2 are different.
Use the IsContained function to check if one is contained in another.
The empty constructible set is contained in any other constructible set.
Semi-algebraic case:
See Also
Complement, ConstructibleSet, ConstructibleSetTools, Difference, EmptyConstructibleSet, Intersection, RealTriangularize, RegularChains, Union
References
Chen, C.; Golubitsky, O.; Lemaire, F.; Moreno Maza, M.; and Pan, W. "Comprehensive Triangular Decomposition". Proc. CASC 2007, LNCS, Vol. 4770: 73-101. Springer, 2007.
Chen, C.; Davenport, J.-D.; Moreno Maza, M.; Xia, B.; and Xiao, R. "Computing with semi-algebraic sets represented by triangular decomposition". Proceedings of 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC 2011), ACM Press, pp. 75--82, 2011.
Download Help Document