Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Statistics[Distributions][Geometric] - geometric distribution
Calling Sequence
Geometric(p)
GeometricDistribution(p)
Parameters
p
-
probability of success
Description
The geometric distribution is a discrete probability distribution with probability function given by:
subject to the following conditions:
The geometric distribution has the lack of memory property: the probability of an event occurring in the next time interval of an exponential distribution is independent of the amount of time that has already passed.
The geometric variate is a special case of the NegativeBinomial variate with number of trials parameter .
The continuous analog of the geometric variate is the Exponential variate.
Note that the Geometric command is inert and should be used in combination with the RandomVariable command.
Examples
See Also
Statistics, Statistics[Distributions], Statistics[RandomVariable]
References
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
Download Help Document