Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
SumTools[Hypergeometric][SumDecomposition] - construct the minimal additive decomposition of a hypergeometric term
Calling Sequence
SumDecomposition(T, n, k, newT, opts)
Parameters
T
-
hypergeometric term of
n
name
k
(optional) name; the index variable to use in the output
newT
(optional) name; will be assigned an equivalent expression for
opts
(optional) equation(s) of the form keyword=value; possible keywords are minimize or maxiterations
Description
The SumDecomposition(T, n, k) command constructs two hypergeometric terms and such that and the certificate has a rational normal form with of minimal degree.
The output from SumDecomposition is a list of two elements . Both are represented in the form
for some integer . The form shown above is called a multiplicative decomposition of the hypergeometric term .
If the third optional argument k is not specified, the first unused name in the sequence is used.
If the fourth optional argument newT is specified, it will be assigned an expression in terms of inert Products of the same form as for above that is equivalent to .
If is a rational function of , then and will be rational functions as well, and the denominator of is of smallest possible degree. In that case, and are not unique, however, and you can use the minimize=v option to impose some additional conditions on and (see below).
Note: If you set infolevel[SumDecomposition] to , Maple prints diagnostics.
Options
The following optional arguments can be used if is a rational function of .
minimize=v, where v is either a numeric value between and or one of "numerator", "sum denominator", "combined", "left", "right".
If v="sum denominator", then the degree of the denominator of will be minimized.
If v="numerator", then the degree of the numerator of will be minimized.
If v="combined", then then the sum of the degrees will be minimized.
If v is a numeric constant between and , then the weighted sum of the degrees will be minimized.
Note that small values of v may lead to time-consuming search; the option maxiterations (see below) can be used to restrict it.
If v="left", then the remainder of the result will be aligned such that for all integers .
If v="right", then the remainder of the result will be aligned such that for all integers .
maxiterations=integer
This option can be used to restrict the number of iterations performed by the command when the option minimize=v is used with a small positive numeric value v. The default value is .
Examples
Set the infolevel to 3.
SumDecomposition: "calling dterm" SumDecomposition: "construct the RCF_1 for the certificate of T" SumDecomposition: "construct a regular description of T" SumDecomposition: "calling dcert" SumDecomposition: "using factorization method" SumDecomposition: "construct a regular description of T1" SumDecomposition: "construct a regular description of T2" SumDecomposition: "T2 is not summable" SumDecomposition: "An attempt to control the degree of the numerator" SumDecomposition: "construct a triple that regularly describes T2"
The above result shows that the input hypergeometric term T is summable.
See Also
infolevel, SumTools[Hypergeometric], SumTools[Hypergeometric][Gosper], SumTools[Hypergeometric][MultiplicativeDecomposition], SumTools[Hypergeometric][RationalCanonicalForm]
References
Abramov, S.A. "Indefinite Sums of Rational Functions." Proceedings ISSAC'95, pp. 303-308. 1995.
Abramov, S.A., and Petkovsek, M. "Minimal Decomposition of Indefinite Hypergeometric Sums." Proceedings ISSAC'2001, pp. 7-14. 2001.
Abramov, S.A., and Petkovsek, M. "Rational Normal Forms and Minimal Decompositions of Hypergeometric Terms." Journal of Symbolic Computation. Vol. 33 No. 5. (2002): 521-543.
Polyakov, S.P. "Symbolic Additive Decomposition of Rational Functions." Programming and Computer Software, Vol. 31 No. 2. (2005): 60-64.
Polyakov, S.P. "Indefinite Summation of Rational Functions with Additional Minimization of the Summable Part." Programming and Computer Software 34 No. 2, (2008): 95-100.
Download Help Document