Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Band Stop Filter with an Algebraic Loop
NOTE: You will need to have an installed and functioning version of MATLAB® and Simulink® to run this example.
Section Layout
Import the System
Simulate the System
Initialization
This is an example of a band pass filter. This example contains an algebraic loop, and therefore will not execute in Simulink.
We import the model with the following command. We need to specify the name of the model to import, as well as a MATLAB script that initializes the variable names.
Warning: Block diagram 'temp_filterb' contains 1 algebraic loop(s). To see more details about the loops use the command line Simulink debugger by typing "sldebug temp_filterb" in the MATLAB command window. To eliminate this message, set the Algebraic loop option in the Diagnostics page of the Simulation Parameters Dialog to "None". > In calsignal at 35 In startrep at 127 Found algebraic loop containing: 'temp_filterb/Gain' 'temp_filterb/Derivative1' 'temp_filterb/Gain2' 'temp_filterb/Sum3' 'temp_filterb/Sum1' (algebraic variable)
Using the PrintSummary command, we can view the model that we have imported.
We can now simplify the model to reduce the number of equations.
First we take the system and build a set of differential equations, and assign the result to the variable sys.
The following table illustrates the different components of the variable sys1.
Differential Equations
Parameter values
Initial conditions
Equations for the sources (inputs)
List of sinks (outputs)
Using the information in the variable sys, we construct a simulation procedure.
Then we plot the simulation results.
Download Help Document