 
													Maple
数学软件
• Maple 教育学术版 • Maple 学生版 • Maple Learn 在线虚拟黑板 • Maple 计算器(手机App) • Maple 专业版 • Maple 个人版 
													Maple 附加模块
• 电子书和学生手册 • Maple 工具箱 • MapleNET 网络部署应用 • Maple Player 免费阅读器 
                                                    Student Success Platform
提高存留率
Maple Flow
Engineering calculations & documentation
• Maple Flow • Maple Flow Migration Assistant 
                                                    
 
                             
													  
													  
                                                     
                                                     
													 
                            
 is sought. The problem is represented as follows (Articolo, p.396):
 is sought. The problem is represented as follows (Articolo, p.396): ![pde[1] := diff(u(x, y, t), t) = `+`(`*`(`/`(1, 10), `*`(diff(u(x, y, t), x, x))), `*`(`/`(1, 10), `*`(diff(u(x, y, t), y, y)))); -1](PDEs/PDEs_2.gif)
![iv[1] := u(0, y, t) = 0, u(1, y, t) = 0, u(x, 0, t) = 0, u(x, 1, t) = 0, u(x, y, 0) = `*`(x, `*`(`+`(1, `-`(x)), `*`(`+`(1, `-`(y)), `*`(y)))); -1](PDEs/PDEs_3.gif)
![pdsolve([pde[1], iv[1]], u(x, y, t))](PDEs/PDEs_4.gif)

 together with its series representation (below we use the first 10000 terms in the solution) in the corresponding range, in this case
 together with its series representation (below we use the first 10000 terms in the solution) in the corresponding range, in this case  
 

![pde[2] := diff(u(x, y, t), t) = `+`(`*`(`/`(1, 10), `*`(diff(u(x, y, t), x, x))), `*`(`/`(1, 10), `*`(diff(u(x, y, t), y, y))), `-`(`*`(`/`(1, 5), `*`(u(x, y, t))))); -1](PDEs/PDEs_12.gif)
![iv[2] := (D[1](u))(0, y, t) = 0, u(1, y, t) = 0, u(x, 0, t) = 0, (D[2](u))(x, 1, t) = 0, u(x, y, 0) = `*`(`+`(`-`(`*`(`^`(x, 2))), 1), `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(y)))), `*`(y))); -1](PDEs/PDEs_13.gif)
![pdsolve([pde[2], iv[2]], u(x, y, t))](PDEs/PDEs_14.gif)

 and its series representation in the domain, which in this case is again
 and its series representation in the domain, which in this case is again  :
: 

![pde[3] := diff(u(x, y, t), t, t) = `+`(`*`(`/`(1, 4), `*`(diff(u(x, y, t), x, x))), `*`(`/`(1, 4), `*`(diff(u(x, y, t), y, y)))); -1](PDEs/PDEs_22.gif)
 unsecured, boundaries
 unsecured, boundaries  secured, and initial conditions as follows:
 secured, and initial conditions as follows: ![iv[3] := (D[1](u))(0, y, t) = 0, (D[1](u))(Pi, y, t) = 0, u(x, 0, t) = 0, u(x, Pi, t) = 0, (D[3](u))(x, y, 0) = 0, u(x, y, 0) = `*`(x, `*`(y, `*`(`+`(Pi, `-`(y))))); -1](PDEs/PDEs_25.gif)
![pdsolve([pde[3], iv[3]], u(x, y, t))](PDEs/PDEs_26.gif)

 and its series representation:
 and its series representation: 

![pde[4] := diff(u(x, y, t), t, t) = `+`(`*`(`/`(1, 4), `*`(diff(u(x, y, t), x, x))), `*`(`/`(1, 4), `*`(diff(u(x, y, t), y, y))), `-`(`*`(`/`(1, 10), `*`(diff(u(x, y, t), t))))); -1](PDEs/PDEs_34.gif)
 held secure, boundaries
 held secure, boundaries  unsecure, and initial conditions as follows:
 unsecure, and initial conditions as follows: ![iv[4] := u(0, y, t) = 0, (D[1](u))(1, y, t) = 0, u(x, 0, t) = 0, (D[2](u))(x, 1, t) = 0, u(x, y, 0) = 0, (D[3](u))(x, y, 0) = `*`(x, `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(x)))), `*`(`+`(1, `-`(`*`(`/`(1, ...](PDEs/PDEs_37.gif)
![pdsolve([pde[4], iv[4]], u(x, y, t))](PDEs/PDEs_38.gif)

)(x, y, 0) = `*`(x, `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(x)))), `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(y)))), `*`(y))))](PDEs/PDEs_41.gif) and its series representation:
 and its series representation: 

![pde[5] := diff(u(x, t), t) = `*`(k, `*`(diff(u(x, t), x, x))); -1](PDEs/PDEs_46.gif)
![iv[5] := u(x, 0) = f(x), u(`+`(`-`(l)), t) = u(l, t), (D[1](u))(`+`(`-`(l)), t) = (D[1](u))(l, t); -1](PDEs/PDEs_47.gif)
![`assuming`([pdsolve([pde[5], iv[5]], u(x, t))], [`<`(0, l)])](PDEs/PDEs_48.gif)

![pde[6] := `+`(`/`(`*`(diff(`*`(r, `*`(diff(u(r, theta), r))), r)), `*`(r)), `/`(`*`(diff(u(r, theta), theta, theta)), `*`(`^`(r, 2)))) = 0; -1](PDEs/PDEs_50.gif)
![iv[6] := u(a, theta) = f(theta), u(r, `+`(`-`(Pi))) = u(r, Pi), (D[2](u))(r, `+`(`-`(Pi))) = (D[2](u))(r, Pi); -1](PDEs/PDEs_51.gif)
![`assuming`([pdsolve([pde[6], iv[6]], u(r, theta), HINT = boundedseries)], [`<`(0, a)])](PDEs/PDEs_52.gif)

![pde[7] := diff(u(x, t), t) = diff(u(x, t), x, x); -1](PDEs/PDEs_54.gif)
![iv[7] := u(x, 0) = f(x), u(-1, t) = 0, u(1, t) = 0; -1](PDEs/PDEs_55.gif)
![pdsolve([pde[7], iv[7]], u(x, t))](PDEs/PDEs_56.gif)

![pde[8] := diff(u(x, t), t) = diff(u(x, t), x, x); -1](PDEs/PDEs_59.gif)
![iv[8] := u(0, t) = 20, u(1, t) = 50, u(x, 0) = 0; -1](PDEs/PDEs_60.gif)
![pdsolve([pde[8], iv[8]], u(x, t))](PDEs/PDEs_61.gif)

![pde[9] := `+`(diff(u(x, t), t), `*`(k, `*`(diff(u(x, t), x, x))), k); -1](PDEs/PDEs_63.gif)
![iv[9] := u(x, 0) = f(x), u(0, t) = A, u(L, t) = B; -1](PDEs/PDEs_64.gif)
![pdsolve([pde[9], iv[9]], u(x, t))](PDEs/PDEs_65.gif)

 :
: ![pde[10] := diff(u(x, t), t) = `+`(`*`(k, `*`(diff(u(x, t), x, x))), f(x, t)); -1](PDEs/PDEs_69.gif)
![iv[10] := u(0, t) = 0, u(l, t) = 0, u(x, 0) = g(x); -1](PDEs/PDEs_70.gif)
![`assuming`([pdsolve([pde[10], iv[10]], u(x, t))], [`and`(`<=`(0, x), `<=`(x, l))]); 1](PDEs/PDEs_71.gif)

![pde[11] := `+`(`/`(`*`(`+`(diff(u(r, theta), r), `*`(r, `*`(diff(u(r, theta), r, r))))), `*`(r)), `/`(`*`(diff(u(r, theta), theta, theta)), `*`(`^`(r, 2)))) = 0; -1](PDEs/PDEs_74.gif)
![iv[11] := u(0, theta) = 0, u(1, theta) = `*`(theta, `*`(`+`(`*`(`/`(1, 3), `*`(Pi)), `-`(theta)))), u(r, 0) = 0, u(r, `+`(`*`(`/`(1, 3), `*`(Pi)))) = 0; -1](PDEs/PDEs_75.gif)
![`assuming`([pdsolve([pde[11], iv[11]], u(r, theta))], [`<`(0, r), `and`(`<`(0, theta), `<`(theta, `+`(`*`(`/`(1, 3), `*`(Pi)))))])](PDEs/PDEs_76.gif)

 :
: ![pde[12] := `+`(`/`(`*`(diff(u(r, theta), r)), `*`(r)), diff(u(r, theta), r, r), `/`(`*`(diff(u(r, theta), theta, theta)), `*`(`^`(r, 2)))) = 0; -1](PDEs/PDEs_79.gif)
![iv[12] := u(1, theta) = f(theta), u(r, 0) = 0, u(r, `+`(`*`(`/`(1, 3), `*`(Pi)))) = 0; -1](PDEs/PDEs_80.gif)
![`assuming`([pdsolve([pde[12], iv[12]])], [`and`(`<`(0, r), `<=`(r, 1)), `and`(`<`(0, theta), `<=`(theta, `+`(`*`(`/`(1, 3), `*`(Pi)))))])](PDEs/PDEs_81.gif)

![`assuming`([pdsolve([pde[12], iv[12]], HINT = boundedseries)], [`and`(`<`(0, r), `<=`(r, 1)), `and`(`<`(0, theta), `<=`(theta, `+`(`*`(`/`(1, 3), `*`(Pi)))))])](PDEs/PDEs_83.gif)

![pde[13] := `+`(`/`(`*`(`+`(diff(u(r, theta), r), `*`(r, `*`(diff(u(r, theta), r, r))))), `*`(r)), `/`(`*`(diff(u(r, theta), theta, theta)), `*`(`^`(r, 2)))) = 0; -1](PDEs/PDEs_85.gif)
![iv[13] := u(1, theta) = `*`(theta, `*`(`+`(1, `-`(`/`(`*`(`/`(3, 2), `*`(theta)), `*`(Pi)))))), u(r, 0) = 0, (D[2](u))(r, `+`(`*`(`/`(1, 3), `*`(Pi)))) = 0; -1](PDEs/PDEs_86.gif)
![pdsolve([pde[13], iv[13]], u(r, theta), HINT = boundedseries)](PDEs/PDEs_87.gif)

![pde[14] := `+`(diff(u(x, y), x, x), diff(u(x, y), y, y)) = 0; -1](PDEs/PDEs_89.gif)
![iv[14] := u(0, y) = `+`(`-`(`*`(`^`(y, 2))), y), (D[1](u))(1, y) = 0, u(x, 0) = 0, u(x, 1) = `*`(x, `*`(`+`(1, `-`(`*`(`/`(1, 2), `*`(x)))))); -1](PDEs/PDEs_90.gif)
![`assuming`([pdsolve([pde[14], iv[14]], u(x, y))], [`and`(`<`(0, x), `<=`(x, 1))])](PDEs/PDEs_91.gif)

![pde[15] := `+`(diff(u(x, y), x), `*`(u(x, y), `*`(diff(u(x, y), y)))) = 0; -1](PDEs/PDEs_94.gif)
![iv[15] := u(x, 0) = `/`(1, `*`(`+`(x, 1))); -1](PDEs/PDEs_95.gif)
![pdsolve([pde[15], iv[15]], u(x, y))](PDEs/PDEs_96.gif)

![pde[16] := `+`(`*`(100, `*`(diff(u(x, t), x, x)))) = diff(u(x, t), t, t); -1](PDEs/PDEs_98.gif)
![iv[16] := u(0, t) = 0, u(2, t) = 0, u(x, 0) = `+`(`*`(32, `*`(sin(`*`(Pi, `*`(x))))), `*`(`^`(e, 2), `*`(sin(`+`(`*`(3, `*`(Pi, `*`(x))))))), `*`(25, `*`(sin(`+`(`*`(6, `*`(Pi, `*`(x)))))))), (D[2](u)...](PDEs/PDEs_99.gif)
![`assuming`([pdsolve([pde[16], iv[16]], u(x, t))], [`and`(`<`(0, x), `<=`(x, 2))])](PDEs/PDEs_100.gif)

![pde[17] := `+`(`*`(4, `*`(diff(u(x, t), x, x)))) = diff(u(x, t), t, t); -1](PDEs/PDEs_103.gif)
![iv[17] := u(0, t) = 0, u(Pi, t) = 0, u(x, 0) = 0, (D[2](u))(x, 0) = 6; -1](PDEs/PDEs_104.gif)
![`assuming`([pdsolve([pde[17], iv[17]], u(x, t))], [`and`(`<`(0, x), `<=`(x, Pi))])](PDEs/PDEs_105.gif)
