 
													Maple
数学软件
• Maple 教育学术版 • Maple 学生版 • Maple Learn 在线虚拟黑板 • Maple 计算器(手机App) • Maple 专业版 • Maple 个人版 
													Maple 附加模块
• 电子书和学生手册 • Maple 工具箱 • MapleNET 网络部署应用 • Maple Player 免费阅读器 
                                                    Student Success Platform
提高存留率
Maple Flow
Engineering calculations & documentation
• Maple Flow • Maple Flow Migration Assistant 
                                                    
 
                             
													  
													  
                                                     
                                                     
													 
                            

 are now also returned because together with the other assumption they provide extra information about
 are now also returned because together with the other assumption they provide extra information about  , namely that
, namely that  is real and greater than 0. These facts cannot be inferred from the assumption
 is real and greater than 0. These facts cannot be inferred from the assumption  alone.
alone. 


 



![`assuming`([is(`<`(0, x))], [additionally, `<=`(y, 0)]);](advanced-math/AdvancedMath_13.gif)


![`assuming`([is(x = 0)], [`<`(0, abs(x))]);](advanced-math/AdvancedMath_16.gif)

![`assuming`([coulditbe(x = 0)], [`<`(0, abs(x))]);](advanced-math/AdvancedMath_18.gif)

![`assuming`([is(`<=`(0, `+`(`*`(`^`(a, 2)), `*`(`^`(b, 2)), `*`(2, `*`(a, `*`(b))), abs(`*`(`^`(r, 2))))))], [real]);](advanced-math/AdvancedMath_20.gif)

![`assuming`([is(abs(`*`(x, `*`(y))) = `*`(abs(x), `*`(abs(y))))], [real]);](advanced-math/AdvancedMath_22.gif)

![`assuming`([is(`<=`(0, `+`(`*`(`^`(`+`(a, `-`(b)), 2)), `*`(`^`(`+`(c, `-`(d)), 2)))))], [real]);](advanced-math/AdvancedMath_24.gif)

![`assuming`([is(`<=`(abs(`+`(x, y)), `+`(abs(x), abs(y))))], [real]);](advanced-math/AdvancedMath_26.gif)

![`assuming`([is(`/`(`*`(('abs')(`+`(`*`(x1, `*`(y2)), `-`(`*`(x2, `*`(y1)))))), `*`(`+`(`*`(x1, `*`(x2)), `*`(y1, `*`(y2))))), rational)], [x1::'posint', x2::'posint', y1::'posint', y2::'posint']);](advanced-math/AdvancedMath_28.gif)

![`assuming`([is(abs(`+`(x1, `-`(x2))), posint)], [x1::'posint', x2::'posint', y1::'posint', y2::'posint']);](advanced-math/AdvancedMath_30.gif)







![`assuming`([is(a, real)], [`/`(1, `*`(`+`(`*`(a, `*`(y)), `-`(sqrt(`+`(`-`(`*`(a, `*`(b))))))))) = z, y = sqrt(x), `<`(0, x)]);](advanced-math/AdvancedMath_38.gif)

![`assuming`([is(`<`(0, exp(f(x))))], [`<`(0, x)]);](advanced-math/AdvancedMath_40.gif)



![`assuming`([coulditbe(x, {1, 2})], [x::set]);](advanced-math/AdvancedMath_44.gif)



![`assuming`([is(randpoly([x, n]), integer)], [x, real, n, prime]);](advanced-math/AdvancedMath_48.gif)

![`assuming`([is(exp(x), real)], [x::imaginary]);](advanced-math/AdvancedMath_50.gif)

![`assuming`([is(`+`(`-`(n), `-`(1)), {-1, 0, posint})], [n::'nonposint']);](advanced-math/AdvancedMath_52.gif)

![`assuming`([coulditbe(`<=`(`+`(`-`(`/`(1, `*`(f(x))))), 0))], [Not(`<`(0, f(x)))]);](advanced-math/AdvancedMath_54.gif)

![`assuming`([is(x, complex)], [x::(Non(0))]);](advanced-math/AdvancedMath_56.gif)

![`assuming`([is(abs(`+`(`*`(x1, `*`(y2)), `-`(`*`(x2, `*`(y1))))), integer)], [x1::'posint', x2::'posint', y1::'posint', y2::'posint']);](advanced-math/AdvancedMath_58.gif)





![`assuming`([coulditbe(m, 0)], [`<`(`+`(`*`(`/`(1, 2), `*`(`^`(n, 2))), `-`(`*`(`/`(1, 2), `*`(n)))), m), n::'integer', Or(`<`(n, 0), `<`(1, n))]);](advanced-math/AdvancedMath_64.gif)

![`assuming`([is(sqrt(x), real)], [x::'integer']);](advanced-math/AdvancedMath_66.gif)

![`assuming`([about(x)], [x::(RealRange(0, infinity)), (`+`(`-`(x)))::(RealRange(`+`(`-`(infinity)), 0))]);](advanced-math/AdvancedMath_68.gif)
 with rational parameter values.
 with rational parameter values. 






![Q := [[1.1180, .36327], [0., 1.1756], [-1.1180, .36327], [-.69098, -.95106], [.69098, -.95106]]; -1](advanced-math/AdvancedMath_77.gif)
![a := [0., 0.]; -1](advanced-math/AdvancedMath_78.gif)
![b := [1., 1.]; -1](advanced-math/AdvancedMath_79.gif)
![c := `+`(`*`(.5, `*`(Q[1])), `*`(.5, `*`(Q[2]))); -1](advanced-math/AdvancedMath_80.gif)
![plots:-display(plottools:-point([a, b, c], symbolsize = 20), plots:-textplot([a[],](advanced-math/AdvancedMath_81.gif)
![plots:-display(plottools:-point([a, b, c], symbolsize = 20), plots:-textplot([a[],](advanced-math/AdvancedMath_82.gif)











































![`assuming`([simplify(int(`/`(`*`(arctan(`+`(`*`(z, `*`(sqrt(2))), `-`(1)))), `*`(`+`(`*`(`^`(z, 2)), 1))), z))], [`<`(0, z)]);](advanced-math/AdvancedMath_126.gif)


















![`assuming`([int(BesselJ(n, x), x)], [n::odd]);](advanced-math/AdvancedMath_145.gif)



 or unevaluated:
 or unevaluated: 









 
  
  
 ![Typesetting:-mprintslash([PG := `Graph 1: an undirected unweighted graph with 4 vertices and 5 edge(s)`], [GRAPHLN(undirected, unweighted, [a, b, c, d], Array(%id = 18446744078203540534), `GRAPHLN/tab...](advanced-math/AdvancedMath_163.gif)
![GraphTheory:-DrawGraph(PG, size = [200, 200]);](advanced-math/AdvancedMath_164.gif) 
 
 
 ![Typesetting:-mprintslash([IG := `Graph 2: an undirected unweighted graph with 7 vertices and 9 edge(s)`], [GRAPHLN(undirected, unweighted, [a, b, c, d,](advanced-math/AdvancedMath_167.gif)
![GraphTheory:-DrawGraph(IG, size = [350, 300]);](advanced-math/AdvancedMath_168.gif) 
 
 .  A symmetry is an
.  A symmetry is an  which maps each variable
 which maps each variable  to either
 to either  or
 or  for some
 for some  , while preserving the structure of e.  Symmetry detection is an important problem in the simplification of logical expressions and especially in determining satisfiability, as a straightforward effort to find solutions for a highly symmetric expression could waste resources exploring paths which are the symmetric analogues of paths already visited.
, while preserving the structure of e.  Symmetry detection is an important problem in the simplification of logical expressions and especially in determining satisfiability, as a straightforward effort to find solutions for a highly symmetric expression could waste resources exploring paths which are the symmetric analogues of paths already visited.  
  
 
 
 
![SymmetryGroup(expr, output = [expressions, group]);](advanced-math/AdvancedMath_181.gif) 
 
 unchanged but which maps
 unchanged but which maps  to
 to  .
.  th Jordan totient of a positive integer
th Jordan totient of a positive integer  , defined as the number of
, defined as the number of  -tuples
-tuples ![a[1], () .. (), a[k];](advanced-math/AdvancedMath_189.gif) of positive integers such that the greatest common divisor
 of positive integers such that the greatest common divisor ![gcd(a[1], () .. (), a[k], n);](advanced-math/AdvancedMath_190.gif) is equal to
 is equal to  .  This generalizes the Euler totient, which is the special case in which
.  This generalizes the Euler totient, which is the special case in which  .
. 

![rtable(1 .. 10, 1 .. 10, [[1, 1, 2, 2, 4, 2, 6, 4, 6, 4], [1, 3, 8, 12, 24, 24, 48, 48, 72, 72], [1, 7, 26, 56, 124, 182, 342, 448, 702, 868], [1, 15, 80, 240, 624, 1200, 2400, 3840, 6480, 9360], [1, ...](advanced-math/AdvancedMath_195.gif)



![Typesetting:-mprintslash([PIECEWISE([0, `<`(a, 0)], [1, a = 0], [infinity, `<`(0, a)], [Limit(`^`(x, a), x = infinity), otherwise])], [piecewise(`<`(a, 0), 0, a = 0, 1, `<`(0, a), infinity, Limit(`^`(...](advanced-math/AdvancedMath_199.gif)









![`assuming`([sqrt(`*`(`^`(a, 2)))], [`<`(0, Re(a))]);](advanced-math/AdvancedMath_209.gif)

![`assuming`([sqrt(`*`(`^`(a, 2)))], [`<`(Re(a), 0)]);](advanced-math/AdvancedMath_211.gif)







![`assuming`([simplify(`+`(`-`(ln(`+`(`-`(`/`(1, `*`(LambertW(z))))))), LambertW(z)), LambertW)], [Not(`<`(0, LambertW(z)))]);](advanced-math/AdvancedMath_219.gif)










![Typesetting:-mprintslash([PIECEWISE([`/`(`*`(Dirac(t)), `*`(t)), mu = 0], [`/`(1, `*`(mu)), otherwise])], [piecewise(mu = 0, `/`(`*`(Dirac(t)), `*`(t)), `/`(1, `*`(mu)))])](advanced-math/AdvancedMath_230.gif)


























































![frontend(proc (z) sign(normal(`*`(I, `*`(z)))) end proc, [`*`(I, `*`(y))]);](advanced-math/AdvancedMath_289.gif)
