 
													Maple
数学软件
• Maple 教育学术版 • Maple 学生版 • Maple Learn 在线虚拟黑板 • Maple 计算器(手机App) • Maple 专业版 • Maple 个人版 
													Maple 附加模块
• 电子书和学生手册 • Maple 工具箱 • MapleNET 网络部署应用 • Maple Player 免费阅读器 
                                                    Student Success Platform
提高存留率
Maple Flow
Engineering calculations & documentation
• Maple Flow • Maple Flow Migration Assistant 
                                                    
 
                             
													  
													  
                                                     
                                                     
													 
                            



![[19]](grouptheory/grouptheory_4.gif)


![[8]](grouptheory/grouptheory_7.gif)





![[2, 3]](grouptheory/grouptheory_13.gif)





















 -test to verify this, as follows.
-test to verify this, as follows. 
  
  
  
  
  
  which have precisely two order classes and which are not elementary abelian.
 which have precisely two order classes and which are not elementary abelian.![Typesetting:-mprintslash([L := [[27, 3], [81, 12], [125, 3], [243, 37], [243, 62], [243, 65], [343, 3]]], [[[27, 3], [81, 12], [125, 3], [243, 37], [243, 62], [243, 65], [343, 3]]])](grouptheory/grouptheory_43.gif)

![Typesetting:-mprintslash([L := [[4, 1], [8, 2], [9, 1], [16, 2], [16, 10], [25, 1], [27, 2], [32, 21], [32, 45], [49, 1], [64, 55], [64, 192], [64, 260], [81, 2], [81, 11], [121, 1], [125, 2], [128, 9...](grouptheory/grouptheory_45.gif)
![Typesetting:-mprintslash([L := [[4, 1], [8, 2], [9, 1], [16, 2], [16, 10], [25, 1], [27, 2], [32, 21], [32, 45], [49, 1], [64, 55], [64, 192], [64, 260], [81, 2], [81, 11], [121, 1], [125, 2], [128, 9...](grouptheory/grouptheory_46.gif)
![Typesetting:-mprintslash([L := [[4, 1], [8, 2], [9, 1], [16, 2], [16, 10], [25, 1], [27, 2], [32, 21], [32, 45], [49, 1], [64, 55], [64, 192], [64, 260], [81, 2], [81, 11], [121, 1], [125, 2], [128, 9...](grouptheory/grouptheory_47.gif)
![[[4, 1], [9, 1], [16, 2], [25, 1], [49, 1], [64, 55], [81, 2], [121, 1], [169, 1], [256, 6732], [289, 1], [361, 1]]](grouptheory/grouptheory_48.gif)
![Typesetting:-mprintslash([L := [1 = 56, 2 = 79, 3 = 80, 4 = 61, 5 = 47, 6 = 90, 7 = 155, 8 = 152, 9 = 114, 10 = 150, 11 = 73, 12 = 40]], [[1 = 56, 2 = 79, 3 = 80, 4 = 61, 5 = 47, 6 = 90, 7 = 155, 8 = ...](grouptheory/grouptheory_49.gif)



![[14520, 1], [43320, 1], [100920, 1], [417720, 1]](grouptheory/grouptheory_53.gif)

 .
.

![[3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]](grouptheory/grouptheory_58.gif)







 and
 and  are adjacent if the group has an element of order
 are adjacent if the group has an element of order  .
. 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		 
		


 , where
 , where  is an odd power of
 is an odd power of  at most
 at most  .
.

















